Full Papers

Quantitative Structure-Property Relationship for Polychlorinated Biphenyls: Toxicity and Structure by Density Functional Theory

  • Long Jieyi ,
  • Yi Haibo ,
  • Liu Xingkai ,
  • Wang Yifei
Expand
  • College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082

Received date: 2011-09-30

  Revised date: 2011-12-16

  Online published: 2012-01-20

Supported by

Project suppotted by the National Fundamental Fund Project Subsidy Funds of Personnel Training, National Natural Scicence Fundation of China (No. J0830415).

Abstract

Polychlorinated biphenyls (PCBs) with hydrophobicity, lipophilicity and high toxicity, are a group of synthetic persistent organic contaminants, and have caused people widespread concern. In this work, density functional theory (DFT) was employed to calculate some structural parameters of PCBs, such as the negative charge density of the benzene ring (Q), ELUMO, electrophilicity index (ω), and the relationship of toxicity of PCBs with coplanarity, the number of substituted chlorines (NCl), Q, and ω was also investigated. Using SPSS17 program, the relevancy of these structural parameters with n-octanol-water partition coefficients (KOW) was analyzed, and multiple linear regression equations of lg KOW for PCBs were constructed. Tests of these quantitative structure-property relationship (QSPR) equations were performed to ensure the stability using cross-validation method, and those equations were also used to predict the toxicity of PCBs. The established QSPR equation based on NCl and ω is simple and reliable, and the predicted lg KOW values of PCBs agree well with experimental results.

Cite this article

Long Jieyi , Yi Haibo , Liu Xingkai , Wang Yifei . Quantitative Structure-Property Relationship for Polychlorinated Biphenyls: Toxicity and Structure by Density Functional Theory[J]. Acta Chimica Sinica, 2012 , 70(08) : 949 -960 . DOI: 10.6023/A1109302

References

1 Arulmozhiraja, S.; Morita, M. Chem. Res. Toxicol. A 2004,108, 3499.

2 Zhou, W.-F. Chin. J. Org. Chem. 2002, 22, 658 (in Chinese). (周文富, 有机化学, 2002, 22, 658.)

3 Huang, J.; Yu, G.; Zhang, Z. L.; Wang, Y. L.; Zhu, W. H.; Wu, G. S. J. Environ. Sci. China 2004, 16, 21.

4 Padmanabhan, J.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K. Bioorg. Med. Chem. 2006, 14, 1021.  

5 Zhou, W.; Zhai, Z.-C.; Wang, Z.-Y.; Wang, L.-S. J. Mol. Struct.-THEOCHEM 2005, 755, 137.  

6 Makino, M. Chemosphere 1998, 37, 13.  

7 Shiu, W.-Y.; Donald, M. J. Phys. Chem. 1986, 15, 911.

8 Brodsky, J.; Ballschmiter, K. Fresenius' Z. Anal. Chem.1988, 331, 295.  

9 Chen, H.-P.; Liu, Y.-X.; Liang, Y.-H. J. Safe Environ. 2004,4, 82 (in Chinese). (陈红萍, 刘永新, 梁英华, 安全与环境学报, 2004, 4, 82.)

10 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.  

11 Frisch, M. J.; Trucks, H. B.; Schlegel, G. E.; Scuseria, M. A.; Robb, J. R.; Cheeseman, G.; Scalmani, V.; Barone, B.; Mennucci, G. A.; Petersson, H.; Nakatsuji, M.; Caricato, X.; Li, H. P.; Hratchian, A. F.; Izmaylov, J.; Bloino,G.; Zheng, J.L.; Sonneberg, M.; Hada, M.; Ehara, K.; Toyota, R. Fukuda, J.; Hasegawa, M.; Ishida, T.; Nakajima, Y.; Honda, O.; Kitao, H.; Nakai, T.; Vreven, J. A.; Montgomery; Jr., J.E.; Peralta, F.; Ogliaro, M.; Bearpark, J. J.; Heyd, E.; Brothers, K. N.; Kudin, V.N.; Staroverov, R.; Kobayashi, J.; Normand, K.; Raghavachari, A.; Rendell, J. C.; Burant, S.S.; Iyengar, J.; Tomasi, M.; Cossi, N.; Rega, J. M.; Millam, M.; Klene, J. E.; Knox, J. B.; Cross, V.; Bakken, C.; Adamo, J.; Jaramillo, R.; Gomperts, R. E.; Stratmann, O.; Yazyev, A. J.; Austin, R.; Cammi, C.; Pomelli, J. W.; Ochterski, R. L.; Martin, K.; Morokuma, V. G.; Zakrzewski, G. A.; Voth, P.; Salvador, J. J.; Dannenberg, S.; Dapprich, A. D.; Daniels, ?.; Farkas, J. B.; Foresman, J. V.; Ortiz, J.; Cioslowski, Fox, D. J. G ussian 09, revision A.1, Gaussian, Inc.:Wallingford CT, 2009.  

12 Arulmozhiraja, S.; Fujii, T.; Morita, M. J. Phys. Chem. A2002, 106, 10590.  

13 Parr, R. G.; Szentpály, L. v.; Liu, S.-B. J. Am. Chem. Soc.1999, 121, 1922.  

14 Liu, C.-Q. Quantum Biology and Application, Higher Education Press, 1990, pp. 12~79 (in Chinese). (刘次全, 量子生物学及其应用, 高等教育出版社, 北京,1990, pp. 12~79.)  

15 Ji, G.-D.; Yuan, X.; Zhao, Y.-H.; Sui, X.; Ding, Y.-Z. Environ. Sci. 1999, 20, 68 (in Chinese). (籍国东, 袁星, 赵元慧, 隋欣, 丁蕴铮, 环境科学, 1999,20, 68.)

16 Yan, X.-F.; Xiao, H.-M.; Ju, X.-H.; Gong, X.-D. Acta Chim. Sinica 2006, 64, 375 (in Chinese). (闫秀芬, 肖鹤鸣, 居学海, 贡雪东, 化学学报, 2006, 64,375.)

17 Yan, X.-F.; Shu, Y.-J.; Wang, L.-J.; Xiao, H.-M. Acta Chim. Sinica 2007, 65, 1789 (in Chinese). (闫秀芬, 舒远杰, 王连军, 肖鹤鸣, 化学学报, 2007, 65,1789.)

18 Huang, Q.-G.; Han, S.-S.; Wang, L.-S. Environ. Chem.1994, 13, 246 (in Chinese). (黄庆国, 韩朔睽, 王连生, 环境化学, 1994, 13, 246.)

19 Miao, X.-S.; Chu, S.-G.; Xu, X.-B. Prog. Chem. 1996, 8, 293 (in Chinese). (苗秀生, 储少岗, 徐晓白, 化学进展, 1996, 8, 293.)

20 E, Y.-X.; Wang, T.; Li, L. J. Beijing Univ. Chem. Technol. (Nat. Sci.) 2006, 33, 81 (in Chinese). (鄂有幸, 王覃, 李蕾, 北京化工大学学报(自然科学版),2006, 33, 81.)

21 Arulmozhiraja, S.; Fujii, T. J. Phys. Chem. A 2000, 104,7068.  

22 Yang, J.-R.; Yu, S.-X. Chemistry 2006, 5, 331 (in Chinese). (杨金瑞, 余尚先, 化学通报, 2006, 5, 331.)

23 Wang, B.; Yu, G.; Zhang, Z.-L. J. Tsinghua Univ. (Sci. & Technol.) 2007, 47, 369 (in Chinese). (王斌, 余刚, 张族麟, 清华大学学报(自然科学版),2007, 47, 369.)

24 Yeh, M.-F.; Hong, C.-S. J. Chem. Eng. Data 2002, 47, 209.  

25 McKinney, J. D.; Singh, P. Acta Crystallogr. C 1988, 44,558.  

26 Mannila, E.; Kolehmainen, E.; Rissanen, K. Acta Chem. Scand. 1994, 48, 684.  

27 Wang, Z.-Y.; Han, X.-Y.; Zhai, Z.-C.; Wang, L.-S. Acta Chim. Sinica 2005, 63, 964 (in Chinese). (王遵尧, 韩香云, 翟志才, 王连生, 化学学报, 2005, 63,964.)

28 Wang, C.; Fang, Z.-Y.; Wang, Z.-Y.; Wang, P.-Y. Acta Chim. Sinica 2009, 67, 2318 (in Chinese). (王辰, 方哲宇, 王遵尧, 王甫洋, 化学学报, 2009, 67,2318.)

29 Famini, G. R.; Penski, C. A.; Wilson, L. Y. J. Phys. Org. Chem. 1992, 5, 395.  

Outlines

/