Full Papers

Preparation and its Application of Novel Graphene/Gold/Functional Conducting Polymer/Hydrogen Peroxide Biosensor

  • Xia Qianfang ,
  • Huang Yingjuan ,
  • Yang Xue ,
  • Li Zaijun
Expand
  • School of Chemical and Materials Engineering, Jiangnan University, Wuxi 214122

Received date: 2011-11-01

  Revised date: 2012-04-12

  Online published: 2012-04-12

Supported by

Project supported by the National Natural Science Foundation of China (No. 21176101), the National Science and Technology Support Plan (No. 2011BAK10B03), Qing Lan Project, the Natural Science Foundation of Zhejiang Province (No. Y4100729) and Zanyu Science Foundation of Zhejiang ZanYu Technology Limited Company.

Abstract

Immobilizations of the graphene-based materials and enzyme are very important to electrochemical properties and use of the biosensor. In this work, a 0.005 mg/mL of graphite oxide and 0.005 mM of chlorauric acid were in sequence electrodeposited on the surface of gold electrode with potentiostatic elec-trolysis. After above procedure was repeated for 20 cycles, 2,5-di-(2-thienyl)-1-pyrrole-1-(p-benzoic acid) was electropolymerized on the modified electrode by cyclic voltammetry and finally formed functional conducting polymer film containing carbonyl groups on surface of the graphene/gold nanocomposite. To prepare hydrogen peroxide biosensor, the horseradish peroxidase was subsequently connected covalently to the film with DHC/NHS as activator. Research results indicated that the graphene/gold nanocomposite obtained using alternating electro-deposition has excellent dispersivity. The biosensor based on the material offers remarkable catalysis performance to the redox of hydrogen peroxide on the electrode surface. Current response of the sensor increases linearly with the increasing concentration of hydrogen peroxide over the range from 2 nM to 200 nM, with a correlation coefficient (R2) of 0.9996. The detection limit was found to be 0.67 nM (S/N=3). The sensitivity is more than other sensor reported in the literatures. In addition, covalent immobilization of the enzyme results in increasing the stability and reproducibility of the sensor. The relative standard deviation is 1.2 % for determination of 5 nM hydrogen peroxide for 20 times. After the sensor was stored at 4℃ for three months, its change value of the response is lower than 3%. The proposed method has been successfully applied to detect trace hydrogen peroxide in milk sample.

Cite this article

Xia Qianfang , Huang Yingjuan , Yang Xue , Li Zaijun . Preparation and its Application of Novel Graphene/Gold/Functional Conducting Polymer/Hydrogen Peroxide Biosensor[J]. Acta Chimica Sinica, 2012 , 70(11) : 1315 -1321 . DOI: 10.6023/A1111012

References

1 Li, X. S.; Cai, W. W.; An, J. H.; Kim, S. Y.; Nah, J.; Yang, D. G.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruff, R. S. Science 2009,324, 1312.  

2 Elias, D. C.; Nair, R. R.; Mohiuddin, T. M. G.; Morozov, S. V.; Blake, P.; Halsall, M. P.; Ferrari, A. C.; Boukhvalov, D. W.; Katsnelson, M. I.; Geim, A. K.; Novoselov, K. S. Science2009, 323, 610.  

3 Yan, X.; Cui, X.; Li, L. S. J. Am. Chem. Soc. 2010, 132,5944.  

4 Xu, C.; Wang, X.; Zhu, J. W. J. Phys. Chem. C 2008, 112,19841.  

5 Zhong, Z. Y.; Wu, W.; Wang, D.; Wang, D.; Shan, J. L.; Qing, Y.; Zhang, Z. M. Biosens. Bioelectron. 2010, 25,2379.  

6 Hong, W. J.; Bai, H.; Xu, Y. X.; Yao, Z. Y.; Gu, Z. Z.; Shi, G. Q. J. Phys. Chem. C 2010, 114, 1822.  

7 Wan, Y.; Wang, Y.; Wu, J. J.; Zhang, D. Anal. Chem. 2011,83, 648.  

8 Gu, Z. G.; Yang, S. P.; Li, Z. J.; Sun, X. L.; Wang, G. L.; Fang, Y. J.; Liu, J. K. Electrochim. Acta 2011, 56, 9162.  

9 Gu, Z. G.; Yang, S. P.; Li, Z. J.; Sun, X. L.; Wang, G. L.; Fang, Y. J.; Liu, J. K. Anal. Chim. Acta 2011, 701, 75.  

10 Wen, Z. L.; Yang, S. D.; Song, Q. J.; Hao, L.; Zhang, X. G. Acta Phys.-Chim. Sin. 2010, 26, 1570 (in Chinese). (温祝亮, 杨苏东, 宋启军, 郝亮, 张校刚, 物理化学学 报, 2010, 26, 1570.)

11 Liu, C. B.; Wang, K.; Luo, S. L.; Tang, Y. H.; Chen, L. Y. Small 2011, 7, 1203.  

12 Chen, X. M.; Wu, G. H.; Chen, J. M.; Chen, X.; Xie, Z. X.; Wang, X. R. J. Am. Chem. Soc. 2011, 133, 3693.  

13 Yang, Y. C.; Dong, S. W.; Shen, T.; Jian, C. X.; Chang, H. J.; Li, Y.; Zhou, J. X. Electrochim. Acta 2011, 56, 6021.  

14 Yang, M. H.; Li, C. X.; Yang, Y. H.; Shen, G. L.; Yu, R. Q. Acta Chim. Sinica 2004, 62, 502 (in Chinese). (阳明辉, 李春香, 杨云慧, 沈国励, 俞汝勤, 化学学报,2004, 62, 502.)

15 Zhu, L. S.; Ai, S. Y.; Yin, H. S.; Zhang, Q. M.; Zhou, Y. L.; Ma, Q.; Liu, T. Electrochim. Acta 2011, 56, 2748.  

16 Bo, Y.; Wang, W.; Qi, J.; Huang, S. Analyst 2011, 136, 1946.  

17 Hummers, W. S. J. Am. Chem. Soc. 1958, 80, 1339.  

18 Gu, Z. G.; Yang, S. P.; Li, Z. J.; Sun, X. L.; Wang, G. L.; Fang, Y. J.; Liu, J. K. Anal. Chim. Acta 2011, 701, 75.  

19 Wang, L.; Liu, S.; Tian, J. Q. Carbon 2011, 49, 3158.  

20 Cui, Y. L.; Zhang, B.; Liu, B. Q. Mikrochim. Acta 2011,174, 137.  

21 Zhou, K. F.; Zhu, Y. H.; Yang, X. L.; Luo, J.; Li, C. Z.; Luan, S. R. Electrochim. Acta 2010, 55, 3055.  

22 Li, Z. J.; Chen, P. P.; Yu, C. P.; Fang, Y. J.; Wang, Z. Y.; Li, M.; Shan, H. X. Curr. Anal. Chem. 2009, 5, 324.  

Outlines

/