Full Papers

Preparation of TiO2-Nanorods Supported Pd Catalyst and Its Electrocatalytic Oxidation on Formic Acid

  • Shi Yi ,
  • Li Jianping ,
  • Xing Junfei ,
  • Xiao Meiling ,
  • Chen Yu ,
  • Zhou Yiming ,
  • Lu Tianhong ,
  • Tang Yawen
Expand
  • Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046

Received date: 2011-12-02

  Revised date: 2012-04-11

  Online published: 2012-04-11

Supported by

Project supported by the National 863 program of China (No. 2007AA05Z143), the National Natural Science Foundation of China (No. 21073094), the United Fund of NSFC and Yunnan Province (No. U1137602) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract

TiO2 nanorods (TiO2-R) and irregular TiO2 (TiO2-I) with anatase phase structure are synthesized by hydrothermal synthesis and inorganic sol gel method, respectively. Using as-prepared TiO2 as support, Pd/TiO2 catalysts are prepared by using sodium ethylenediamine tetracetate (EDTA) as complexing agent and NaBH4 as reductant. The studies of transmission electron microscopy (TEM) and X-ray diffraction (XRD) reveal that the average particle size of Pd/TiO2-R catalyst is very similar to that of Pd/TiO2-I catalyst. Cyclic voltammetry measurements show that the peak current of formic acid oxidation at Pd/TiO2-R catalyst increases by 70%. Chronoamperometric measurements indicate that the current density at the Pd/TiO2-R catalyst electrode at 3000 s is almost 16 times larger than that at the Pd/TiO2-I catalyst electrode. These electrochemical experiments show that the electrocatalytic activity and long-term operation stability of Pd/TiO2-R catalyst are much better than that of Pd/TiO2-I catalyst for formic acid oxidation in acidic media, indicating that TiO2 nanorods support material can effectively promote the electrocatalytic activity and stability of Pd catalyst for formic acid electrooxidation. Likely, TiO2 nanorods possess good electronic conductivity and abundant surface oxygen-containing groups, which improve the electrocatalytic activity and the anti-poisoned performance of Pd catalyst for the formic acid electrooxidation. Thus, TiO2 nanorods with anatase phase structure possess the potential application prospect in direct formic acid fuel cell (DFAFC).

Cite this article

Shi Yi , Li Jianping , Xing Junfei , Xiao Meiling , Chen Yu , Zhou Yiming , Lu Tianhong , Tang Yawen . Preparation of TiO2-Nanorods Supported Pd Catalyst and Its Electrocatalytic Oxidation on Formic Acid[J]. Acta Chimica Sinica, 2012 , 70(11) : 1257 -1262 . DOI: 10.6023/A1112022

References

1 Zhu, Y.; Ha, S. Y.; Masel, R. I. J. Power Sources 2004, 130,8.  

2 Brummer, S. B.; Makrides, A. C. J. Phys. Chem. 1964, 68,1448.  

3 Samjeske, G.; Miki, A.; Ye, S.; Osawa, M. J. Phys. Chem. B2006, 110, 16559.  

4 Zhao, J.-Y.; Zhou, Y.-M.; Wu, Y.-S.; Tang, Y.-W.; Chen, Y.; Lu, T.-H. Acta Chim. Sinica 2011, 69, 1179 (in Chinese). (赵佳越, 周益明, 吴云胜, 唐亚文, 陈煜, 陆天虹, 化学 学报, 2011, 69, 1179.)

5 Zhang, L.; Tang, Y.; Bao, J.; Lu, T.; Li, C. J. Power Sources 2006, 162, 177.  

6 Wang, X.; Tang, Y.; Gao, Y.; Lu, T. J. Power Sources2008, 175, 784.  

7 Mazumder, V.; Sun, S. J. Am. Chem. Soc. 2009, 131, 4588.  

8 Lee, H.; Habas, S. E.; Somorjai, G. A.; Yang, P. J. Am. Chem. Soc. 2008, 130, 5406.  

9 Auer, E.; Freund, A.; Pietsch, J.; Tacke, T. Appl. Catal. A1998, 173, 259.  

10 Coq, B.; Planeix, J.; Brotons, V. Appl. Catal. A 1998, 173,175.  

11 Wang, Z.-B.; Yin, G.-P.; Shi, P.-F. Acta Chim. Sinica 2005,63, 1813 (in Chinese). (王振波, 尹鸽平, 史鹏飞, 化学学报, 2005, 63, 1813.)

12 Che, G.; Lakshmi, B. B.; Fisher, E. R.; Martin, C. R. Nature1998, 383, 346.

13 Lü, Y.-Z.; Xu, Y.; Lu, T.-H.; Xing, W.; Zhang, M.-L. Acta Chim. Sinica 2007, 65, 1583 (in Chinese). (吕艳卓, 徐岩, 陆天虹, 邢巍, 张密林, 化学学报, 2007,65, 1583.)

14 Huang, S.; Ganesan, P.; Park, S.; Popov, B. N. J. Am. Chem. Soc. 2009, 131, 13898.  

15 Guo, X.; Guo, D. J.; Qiu, X. P.; Chen, L. Q.; Zhu, W. T. J. Power Sources 2009, 194, 281.  

16 Wang, X.; Xia, Y. Electrochim. Acta 2010, 55, 851.  

17 Usseglio, S.; Damin, A.; Scarano, D.; Adriano Zecchina, S. B.; Lamberti, C. J. Am. Chem. Soc. 2007, 129, 2822.  

18 Mohammadi, M. R.; Ordikhani, F.; Fray, D. J.; Khomamizadeh, F. Particuology 2011, 9, 161.  

19 Liu, C.-P.; Yang, H.; Xing, W.; Lu, T.-H. Chem. J. Chin. Univ. 2002, 23, 1367 (in Chinese). (刘长鹏, 杨辉, 邢巍, 陆天虹, 高等学校化学学报, 2002,23, 1367.)

20 Hu, F.-P.; Shen, P.-K. Chin. J. Catal. 2007, 28, 80 (in Chinese). (胡风平, 沈培康, 催化学报, 2007, 28, 80.)

21 Xu, W.; Gao, Y.; Lu, T.; Tang, Y.; Wu, B. Catal. Lett.2009, 130, 312.  

22 Zhang, J.; Yan, S. J. Petrochem. Univ. 2011, 24, 6 (in Chinese). (张静, 阎松, 石油化工高等学校学报, 2011, 24, 6.)

23 Tang, Y.; Zhou, Y.; Wang, X.; Bao, J.; Lu, L.; Lu, T. Chem. Res. Chin. Univ. 2009, 25, 239.

24 Antolinia, E.; Cardellinib, F. J. Alloys Compd. 2001, 315,118.  

25 Xu, J.; Zhao, T.; Liang, Z. J. Power Sources 2008, 185, 857.  

26 Qiu, J.; Zhang, S.; Zhao, H. Sens. Actuators B-Chem. 2011,160, 875.  

Outlines

/