Full Papers

Synthesis of Pentacene Analogues Containing Heteroatoms and Study of Their Field-effect Performance

  • Zhu Minliang ,
  • Luo Hao ,
  • Wang Liping ,
  • Yu Gui ,
  • Liu Yunqi
Expand
  • a Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
    b School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

Received date: 2012-04-23

  Online published: 2012-05-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20825208, 21021091)

Abstract

Pentacene analogues containing nitrogen and sulfur heteroatoms were synthesized using N,N'-diphenylbenzene- 1,4-diamine as a starting material. Ring-closing reaction of N,N'-diphenylbenzene-1,4-diamine with sulfur powder resulted in formation of [1,4]benzothiazino[2,3-b]phenothiazine (compound 1). Catalytic amounts of iodine and reflux temperature of o-dichlorobenzene were necessary. 3H,10aH-[1,4]Benzothiazino[2,3-b]phenothiazine (compound 2) were obtained by oxidization and dehydrogenation of compound 1. The compounds 1 and 2 were purified by vacuum sublimation and characterized by UV-vis absorption spectra and cyclic voltammetry. Their optical energy gaps, energy levels of highest occupied molecular orbitals (HOMOs), and the lowest unoccupied ones were calculated. The HOMO energy levels of the compounds 1 and 2 are -5.85 and -5.42 eV, respectively. The absorption spectra of the compound 2 in thin film shows an obvious red-shift compared with that in CH2Cl2 solution, which indicates strong molecular interactions in thin film. Moreover, the crystal structure of the compound 2 was obtained and it has a planar structure. Strong π…π and N…S interactions between adjacent molecules were observed. However, there is no S…S, CH…π interactions, or hydrogen bond, which leads to no OFET performance of the compound 2. Organic field-effect transistors (OFETs) were fabricated using compound 1 as a semiconducting layer. Bottom-gate and top-contact OFET devices were fabricated by vacuum deposition on polystyrene (PS) or octadecyltrichlorosilane (OTS)-treated SiO2/Si substrates. The OFET devices fabricated on OTS-treated SiO2/Si substrates showed a good field-effect performance with a mobility of 0.01 cm2·V-1·s-1 and a current on/off ratio of 6.6×103. However, the OFET devices fabricated on the PS modified SiO2/Si substrates exhibited a lower mobility of 2.5×10-3 cm2·V-1·s-1. AFM images were used to understand field-effect performance of the OFET devices fabricated on PS or OTS-treated SiO2/Si substrates. All OFET devices were tested under air. A higher field-effect performance of the pentacene analogues semiconductor could likely be achieved through proper control in functional group and device fabrication.

Cite this article

Zhu Minliang , Luo Hao , Wang Liping , Yu Gui , Liu Yunqi . Synthesis of Pentacene Analogues Containing Heteroatoms and Study of Their Field-effect Performance[J]. Acta Chimica Sinica, 2012 , 70(15) : 1599 -1603 . DOI: 10.6023/A12040142

References

[1] Katz, H. E.; Hong, X. M.; Dodabalapur, A.; Sarpeshkar, R. J. Appl. Phys. 2002, 91, 1572.

[2] Muccini, M. Nat. Mater. 2006, 5, 605.

[3] Kitamura, M.; Imada, T.; Arakawal, Y. Jpn. J. Appl. Phys. Part 1 2003, 42, 2483.

[4] Huitema, H. E. A.; Gelinck, G. H.; van der Putten, J. B. P. H.; Kuijk, K. E.; Hart, K. M.; Cantatore, E. D. Adv. Mater. 2002, 14, 1201.

[5] Kitamura, M.; Imada, T.; Arakawa, Y. Appl. Phys. Lett. 2003, 83, 3410.

[6] Xiao, K.; Liu, Y.; Guo, Y.; Yu, G.; Wan, L.; Zhu, D. Appl. Phys. A 2005, 80, 1541.

[7] Gundlach, D. J.; Lin, Y. Y.; Jackson, T. N.; Nelson, S. F.; Schlom, D. G. IEEE Electron Device Lett. 1997, 18, 87.

[8] Lin, Y. Y.; Gundlach, D. J.; Nelson, S. F.; Jackson, T. N. IEEE Electron Device Lett. 1997, 18, 606.

[9] Meng H.; Bendikov, M.; Mitchell, G.; Helgeson, R.; Wudl, F.; Bao, Z.; Siegrist, T.; Kloc, C.; Chen, C.-H. Adv. Mater. 2003, 15, 1090.

[10] Klauk, H.; Halik, M.; Zschieschang, U.; Schmid, G.; Radlik, W.; Weber, W. J. Appl. Phys. 2002, 92, 5259.

[11] Kelley, T. W.; Muyres, D. V.; Baude, P. F.; Smith, T. P.; Jones, T. D. Mater. Res. Soc. Symp. Ser. 2003, 771, 169.

[12] Tang, M.; Okamoto, T.; Bao, Z. J. Am. Chem. Soc. 2006, 128, 16002.

[13] Ito, K.; Suzuki, T.; Sakamoto, Y.; Kubota, D.; Inoue, Y.; Sato, F.; Tokito, S. Angew. Chem., Int. Ed. 2003, 42, 1159.

[14] Katz, H. E.; Bao, Z.; Gilat, S. L. Acc. Chem. Res. 2001, 34, 359.

[15] Herwing, P. T.; Müllen, K. Adv. Mater. 1999, 11, 480.

[16] Ma, Y. Q.; Sun, Y. M.; Liu, Y. Q. J. Mater. Chem. 2005, 15, 4894.

[17] Xiao, K.; Liu, Y. Q.; Qi, T. J. Am. Chem. Soc. 2005, 127, 13281.

[18] Andreani, F.; Bizzarri, P. C.; Casa, C. D.; Fiorini, M.; Salatelli, E. J. Heterocycl. Chem. 1991, 28, 295.

[19] Curtis, M. D.; Cao, J.; Kampf, J. W. J. Am. Chem. Soc. 2004, 126, 4318.

[20] Takimiya, K.; Shinamura, S.; Osaka, I.; Miyazaki, E. Adv. Mater. 2011, 23, 4347.

[21] Liu, C. G.; Xu, Y. Z.; Wei, Y. J.; Qi, J.; Xu, Z. H.; Ye, F.; Wu, J. G. Spectrosc. Spectr. Anal. 2005, 25, 584. (刘翠格, 徐怡庄, 魏永巨, 齐剑, 许振华, 叶放, 吴瑾光, 光谱学与光谱分析, 2005, 25, 584.)

[22] Du, C. Y.; Chen, J. M.; Yu, G.; Liu, Y. Q. J. Org. Chem. 2009, 74, 7322. Zhang, L.; Tan, L.; Wang, Z. H.; Hu, W. P.; Zhu, D. B. Chem. Mater. 2009, 21, 1993.
Outlines

/