Full Papers

Synthesis and Characterization of Organosilyl Derivatives of Keggin Polyoxometalates [XW11O40(SiR)2]n-(X=CoIII, P; R=CH=CH2, OH)

  • Zhang Jianping ,
  • Yang Chun ,
  • Zhou Jiahong
Expand
  • a Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Material Science, Nanjing Normal University, Nanjing 210097;
    b Jiangsu Key Laboratory of Biofunctional Materials, Analysis and Testing Center of Nanjing Normal University, Nanjing 210097

Received date: 2012-03-23

  Online published: 2012-05-03

Supported by

Project supported by the National Natural Science Foundation of China (No. 20473037), the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Leading Academic Discipline Program of 211 Project of Nanjing Normal University (the 3rd phase).

Abstract

The Keggin-type organosilyl substituted tungstocobaltates [CoIIIW11O40(SiR)2]5- (CoIIIW11(SiR)2, R=CH=CH2,OH) were synthesized for the first time by using CoIIIW11 and organosilane as starting materials. The syntheses were carried out in an ethanol-water mixing solvent with volume ratio of 2:1 and pH 1. Ethanol was employed as a cosolvent here to increase the solubility of organosilane in the reactive system, so that the organosilane was accessible and could react with CoIIIW11 before it was converted to CoIIIW12. The mixture was stirred at room temperature for 20 h, and then the product was obtained as tetramethylammonium (TMA) salt precipitate by adding tetramethylammonium chloride (TMACl). The structure and composition of the products were characterized by IR, UV-Vis, NMR, TG-DTA and elemental analysis techniques. The IR spectra showed that the Keggin units in the products were close to the saturated structure. Two SiR groups were inserted into the vacancy of CoIIIW11 and a Si—O—Si bridge was formed between two Si atoms, similar to those reported previously in organosilyl substituted tungstosilicate and tungstophosphate. This insertion of SiR groups was also confirmed by 29Si, 1H and 13C NMR of the products, but the 29Si signal exhibited a large chemical shift compared with those of organosilyl substituted tungstosilicate and tungstophosphate possibly due to the paramagnetism of CoIII. UV-Vis spectra of the products also indicated the conversion of the structural symmetry and the retainment of CoIII in the synthesis. The decomposing processes of the products were suggested by TG-DTA curves, which also revealed that, the anion in CoIIIW11(SiOH)2 possesses a higer stability than that in CoIIIW11 (SiCH=CH2)2. Furthermore, [PW11O40(SiR)2]3- [PW11(SiR)2, R=CH=CH2, OH], which were synthesized previously by the procedure of solid-liquid phase transfer, were also synthesized under the same conditions, indicating this method is a feasible and general approach for the synthesis of organosilyl substituted polyoxometalates.

Cite this article

Zhang Jianping , Yang Chun , Zhou Jiahong . Synthesis and Characterization of Organosilyl Derivatives of Keggin Polyoxometalates [XW11O40(SiR)2]n-(X=CoIII, P; R=CH=CH2, OH)[J]. Acta Chimica Sinica, 2012 , 70(14) : 1555 -1560 . DOI: 10.6023/A12030020

References

[1] Judeinstein, P. Chem. Mater. 1992, 4, 4.

[2] Judeinstein, P. J. Sol-Gel Sci. Technol. 1994, 2, 147.

[3] Sanchez, C.; de A. A. Soler-Illia, G. J.; Ribot, F.; Lalot, T.; Mayer, C. R.; Cabuil, V. Chem. Mater. 2001, 13, 3061.

[4] Mayer, C. R.; Thouvenot, R.; Lalot, T. Chem. Mater. 2000, 12, 257.

[5] Mayer, C. R.; Thouvenot, R.; Lalot, T. Macromolecules 2000, 33, 4433.

[6] Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Angew. Chem. Int. Ed. 1999, 38, 3672.

[7] Mayer, C. R.; Cabuil, V.; Lalot, T.; Thouvenot, R. Adv. Mater. 2000, 12, 417.

[8] Schroden, R. C.; Blanford, C. F.; Melde, B. J.; Johnson, B. J. S.; Stein, A. Chem. Mater. 2001, 13, 1074.

[9] Zhang, R. F.; Yang, C. J. Mater. Chem. 2008, 18, 2691.

[10] Luo, X. J.; Yang, C. Phys. Chem. Chem. Phys. 2011, 13, 7892.

[11] Judeinstein, P.; Deprun, C.; Nadjo, L. J. Chem. Soc., Dalton Trans. 1991, 1991.

[12] Knoth, W. H. J. Am. Chem. Soc. 1979, 101, 759.

[13] Ammari, N.; Hervé, G.; Thouvenot, R. New J. Chem. 1991, 15, 607.

[14] Weeks, M. S.; Hill, C. L.; Schinazi, R. F. J. Med. Chem. 1992, 35, 1216.

[15] Agustin, D.; Dallery, J.; Coelho, C.; Proust, A.; Thouvenot, R. J. Organomet. Chem. 2007, 692, 746.

[16] Wang, X. H.; Liu, J. F.; Li, J. X.; Yang, Y.; Liu, J. T.; Li, B.; Pope, M. T. J. Inorg. Biochem. 2003, 94, 279.

[17] Bas-Serra, J.; Todorut, I.; Casa?-Pastor, N.; Server-Carrió, J.; Baker, L. C. W.; Acerete, R. Synth. React. Inorg. Met.-Org. Chem. 1995, 25, 869.

[18] Chen, Y. G.; Liu, J. F. Synth. React. Inorg. Met.-Org. Chem. 1997, 27, 239.

[19] Yang, Q. H.; Dai, H. C.; Liu, J. F. Transition Met. Chem. 1998, 23, 93.

[20] Wu, Q. Y. Mater. Lett. 2000, 42, 179.

[21] Wu, Q. Y.; Sang, X. G.; Shao, F.; Pang, W. Q. Mater. Chem. Phys. 2005, 92, 16.

[22] Yu, X. B.; Wu, H. J. Inorg. Mater. 1996, 11, 703. (余锡宾, 吴虹, 无机材料学报, 1996, 11, 703.)

[23] Wang, E. B.; Hu, C. W.; Xu, L. Introduction to Polyacid Chemistry, Chemical Industry Press, Beijing, 1997, p. 36. (王恩波, 胡长文, 许林, 多酸化学导论, 化学工业出版社, 北京, 1997, p. 36.)

[24] Nomiya, K.; Kobayashi, R.; Miwa, M. Bull. Chem. Soc. Jpn. 1983, 56, 2272.

[25] Kojima, K.; Matsuda, J.; Kojima, N.; Ban, T.; Tsujikawa, I. Bull. Chem. Soc. Jpn. 1987, 60, 3213.

[26] Kojima, K.; Matsuda, J. Bull. Chem. Soc. Jpn. 1985, 58, 821.

[27] Wang, E. B.; Liu, L. L.; Shen, E. H.; Wang, Z. P. Chin. J. Appl. Chem. 1991, 8, 13. (王恩波, 刘连利, 沈恩洪, 王作屏, 应用化学, 1991, 8, 13.)

[28] Wang, E. B.; You, W. S.; Liu, J. F.; Hu, C. W. Chem. J. Chin. Univ. 1991, 12, 711. (王恩波, 由万胜, 刘景福, 胡长文, 高等学校化学学报, 1991, 12, 711.)

[29] Wang, E. B.; Hu, C. W.; Liu, J. F.; Zhang, Y. F. Chin. Sci. Bull. 1991, 36, 197. (王恩波, 胡长文, 刘景福, 张云峰, 科学通报, 1991, 36, 197.)

[30] Acerete, R.; Casa?-Pastor, N.; Bas-Serra, J.; Baker, L. C. W. J. Am. Chem. Soc. 1989, 111, 6049.

[31] Niu, J. Y.; Wang, J. P. Introduction of Heteropoly Compound, Henan University Press, Kaifeng, 2000, p. 350. (牛景扬, 王敬平, 杂多化合物概论, 河南大学出版社, 开封, 2000, p. 350.)
Outlines

/