Review

Advances in Cyclodextrin Polymers and Their Applications in Biomedicine

  • Qie Shuyan ,
  • Hao Ying ,
  • Liu Zongjian ,
  • Wang Jin ,
  • Xi Jianing
Expand
  • a Beijing Rehabilitation Hospital of Capital Medical University, Beijing 100044;
    b Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123

Received date: 2020-01-08

  Online published: 2020-02-26

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 91963124, 51773225, 51903246).

Abstract

Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides composed of α-1,4-linked D-glucopyranose units. The most commonly used CDs are α-, β-, and γ-CD, which consist of 6, 7, and 8 D-glucose units, respectively. They possess a relative hydrophobic inner cavity and a hydrophilic outer surface and can form inclusion complexes with various small molecules, metal ions and polymers, tailoring the physicochemical property of the guests, and thus have been widely used in the fields of pharmacy, food, chemistry, chromatography, catalysis, biotechnology, agriculture, cosmetics, hygiene, medicine, textiles and the environment, etc. However, it is difficult to manipulate the native CDs in some specific applications, they are crystallized solid and soluble in water but insoluble in most organic solvents. CD polymers (CDPs), such as crosslinked CDs or CD based hydrogels with various crosslinkers by chemical reactions, and CD based supramolecular polymers formed by physical interactions, can achieve the integration effect and synergy effect of CDs, crosslinkers and guest polymers, not only possessing the inclusion capacity of CDs, but also endowing CDs with other properties introduced by crosslinkers. The CDPs can be easily manipulated and they exhibit unique features that native CDs are lack of. Hence, the design, synthesis and applications of CDPs have attracted broad interests in recent years. This review focuses on the recent progress in CDPs, and different types of CDPs are identified and classified based on the structures and functions, namely CD based polyrotaxane, grafted CDs, crosslinked CDs and linear CDs, etc. Besides, the synthetic methodologies of CDPs are highlighted. Particular attention is paid to the breakthrough on the CDPs in the past five years, and their applications in biomedicine, such as drug delivery, gene delivery, target delivery, controlled release and cell imaging are discussed in detail. The typical applications in other fields such as absorption, environment remediation, thermal insulation, catalysis and slid-ring gels are also discussed in brief. Finally, the review provides brief summary and prospect of CDPs.

Cite this article

Qie Shuyan , Hao Ying , Liu Zongjian , Wang Jin , Xi Jianing . Advances in Cyclodextrin Polymers and Their Applications in Biomedicine[J]. Acta Chimica Sinica, 2020 , 78(3) : 232 -244 . DOI: 10.6023/A20010006

References

[1] Crini, G. Chem. Rev. 2014, 114, 10940.
[2] Yu, G.; Jie, K.; Huang, F. Chem. Rev. 2015, 115, 7240.
[3] Chen, Y.; Gui, X.; Duan, Z.; Zhu, L.; Xiang, Y.; Xia, D. Chin. J. Org. Chem. 2019, 39, 1284(in Chinese). (陈雅琪, 桂鑫, 段尊斌, 朱丽君, 项玉芝, 夏道宏, 有机化学, 2019, 39, 1284.)
[4] Shao, W.; Liu, X.; Wang, T.; Hu, X. Chin. J. Org. Chem. 2018, 38, 1107(in Chinese). (邵为, 刘昕, 王婷婷, 胡晓玉, 有机化学, 2018, 38, 1107.)
[5] Liu, A.; Xiong, C.; Ma, X.; Ma, W.; Sun, R. Chin. J. Chem. 2019, 37, 793.
[6] Chen, X.; Chen, Y.; Liu, Y. Chin. J. Chem. 2018, 36, 526.
[7] Zhang, Y.; Chen, Y.; Li, J.; Liang, L.; Liu, Y. Acta Chim. Sinica 2018, 76, 622. (张依, 陈湧, 李晶晶, 梁璐, 刘育, 化学学报, 2018, 76, 622.)
[8] Ren, K.; He, J.; Zhang, M.; Wu, Y.; Ni, P. Acta Chim. Sinica 2015, 73, 1038(in Chinese). (任锴, 何金林, 张明祖, 吴一弦, 倪沛红, 化学学报, 2015, 73, 1038.)
[9] Li, Q.; Wang, J.; Ye, L.; Zhang, A.; Zhang, X.; Feng, Z. Chem-NanoMat 2019, 5, 838.
[10] Frieler, L.; Ho, T. M.; Anthony, A.; Hidefumi, Y.; Yago, A. J. E.; Bhandari, B. R. J. Food Sci. Technol. 2019, 56, 1519.
[11] Ho, T. M.; Bhandari, B. R. Powder Technol. 2015, 17, 585.
[12] Morin-Crini, N.; Crini, G. Prog. Polym. Sci. 2013, 38, 344.
[13] Morin-Crini, N.; Winterton, P.; Fourmentin, S.; Wilson, L. D.; Fenyvesi, E.; Crini, G. Prog. Polym. Sci. 2018, 78, 1.
[14] Manakker, F. V. D.; Vermonden, T.; Nostrum, C. F.; Hennink, W. E. Biomacromolecules 2009, 10, 3157.
[15] Solms, J.; Egli, R. H. Helv. Chim. Acta 1965, 48, 1225.
[16] Solms, J. US 3420788, 1969.
[17] Harada, A.; Li, J.; Kamachi, M. J. Am. Chem. Soc. 1994, 116, 3192.
[18] Xu, M.; Zhang, Y. Polym. Mater. Sci. Eng. 2010, 26, 162(in Chinese). (徐美芸, 章永化, 高分子材料科学与工程, 2010, 26, 162.)
[19] Arisaka, Y.; Yui, N. J. Mater. Chem. B 2019, 7, 2123.
[20] Gao, P.; Wang, P.; Geng, X.; Ye, L.; Zhang, A.; Feng, Z. Acta Chim. Sinica 2013, 71, 347(in Chinese). (高鹏, 王培境, 耿雪, 叶霖, 张爱英, 冯增国, 化学学报, 2013, 71, 347.)
[21] Li, H.; Wang, J.; Ni, Y.; Zhou, Y.; Yan, D. Acta Chim. Sinica 2016, 74, 415(in Chinese). (李惠梅, 王洁, 倪云洲, 周永丰, 颜德岳, 化学学报, 2016, 74, 415.)
[22] Arunachalam, M.; Harry, W. G. Prog. Polym. Sci. 2014, 39, 1043.
[23] Hashidzume, A.; Yamaguchi, H.; Harada, A. Eur. J. Org. Chem. 2019, 21, 3344.
[24] Harada, A.; Hashidzume, A.; Yamaguchi, H.; Takashima, Y. Chem. Rev. 2009, 109, 5974.
[25] Okada, M.; Kamachi, M.; Harada, A. Macromolecules 1999, 32, 7202.
[26] Harada, A.; Kawaguchi, Y.; Nishiyama, T.; Kamachi, M. Macromol. Rapid. Commun. 1997, 18, 535.
[27] Rusa, C. C.; Tonelli, A. E. Macromolecules 2000, 33, 5321.
[28] Harada, A.; Suzuki, S.; Okada, M.; Kamachi, M. Macromolecules 1996, 29, 5611.
[29] Okumura, H.; Kawaguchi, Y.; Harada, A. Macromolecules 2001, 34, 6338.
[30] Loethen, S.; Kim, J. M.; Thompson, D. H. Polym. Rev. 2007, 47, 383.
[31] Wang, P. J.; Wang, J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2012, 53, 2361.
[32] Wang, J.; Li, S.; Ye, L.; Zhang, A.; Feng, Z. G. Macromol. Rapid Commun. 2012, 33, 1143.
[33] Kato, K.; Kamotsu, H.; Ito, K. Macromolecules 2010, 43, 8799.
[34] Yu, S.; Zhang, Y.; Wang, X.; Zhen, X.; Zhang, Z.; Wu, W.; Jiang, X. Angew. Chem., Int. Ed. 2013, 52, 7272.
[35] Zhang, X. W.; Zhu, X. Q.; Tong, X. M.; Ye, L.; Zhang, A.; Feng, Z. G. J. Polym. Sci. Part A:Polym. Chem. 2008, 46, 5283.
[36] Ren, L. X.; Ke, F. Y.; Chen, Y. M.; Liang, D.; Huang, J. Macromolecules 2008, 41, 5295.
[37] Dai, X. H.; Dong, C. M.; Yan, D. Y. J. Phys. Chem. B 2008, 112, 3644.
[38] Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. J. Phys. Chem. B 2010, 114, 5342.
[39] Wang, J.; Ye, L.; Zhang, A.; Feng, Z. G. J. Mater. Chem. 2011, 21, 3243.
[40] Wang, J.; Gao, P.; Wang, P. J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2011, 52, 374.
[41] Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. Polym. Chem. 2011, 2, 931.
[42] Wang, J.; Wang, P. J.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2011, 52, 5362.
[43] Wang, J.; Gao, P.; Jiang, L.; Ye, L.; Zhang, A.; Feng, Z. G. Polymer 2012, 53, 2864.
[44] Duan, N.; Lu, H.; Ye, L.; Zhang, A.; Feng, Z. G. J. Phys. Chem. B 2019, 123, 5004.
[45] Kong, T.; Ye, L.; Zhang, A.; Feng, Z. G.; Langmuir 2018, 34, 14076.
[46] Gao, M.; Lu, H.; Song, R. H.; Ye, L.; Zhang, A.; Feng, Z. G. Polym. Chem. 2020, 11, 653.
[47] Wang, J.; Zhang, X. ACS Nano 2015, 9, 11389.
[48] Wang, J.; Du, R.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 1468.
[49] Uenuma, S.; Maeda, R.; Yokayama, H.; Ito, K. Chem. Commun. 2019, 55, 4158.
[50] Uenuma, S.; Maeda, R.; Yokoyama, H.; Ito, K. Macromolecules 2019, 52, 3881.
[51] Arisaka, Y.; Yui, N. Macromol. Rapid Commun. 2019, 40, 1900323.
[52] Demirci, S.; Kinali-Demirci, S.; Jiang, S. Chem. Commun. 2017, 53, 3713.
[53] Zhang, L.; Zhao, J.; Wang, Y. Acta Chim. Sinica 2015, 73, 1182(in Chinese). (张丽芳, 赵杰, 王勇, 化学学报, 2015, 73, 1182.)
[54] Lucio, D.; Martinez-Oharriz, M. C.; Gu, Z.; He, Y.; Aranaz, P.; Vizmanos, J. L.; Irache, J. M. Int. J. Pharm. 2018, 547, 97.
[55] Azmeera, V.; Tungala, K.; Adhikary, P.; Kumar, K.; Krishnamoorthi, S. Int. J. Biol. Macromol. 2017, 104, 1204.
[56] Li, L.; Guo, X.; Wang, J.; Liu, P.; Prud'homme, R. K.; May, B. L.; Lincoln, S. F. Macromolecules 2008, 41, 8677.
[57] Wang, J.; Guo, Z.; Xiong, J.; Wu, D.; Li, S.; Tao, Y.; Qin, Y.; Kong, Y. Int. J. Biol. Macromol. 2019, 125, 941.
[58] Shen, Y.; Niu, L.; Yu, Z.; Wang, M.; Shang, Z.; Yang, Y. Appl. Surf. Sci. 2018, 444, 42.
[59] Pooresmaeil, M.; Namazi, H. Colloids Surf. B:Biointer. 2018, 172, 17.
[60] Zhang, B.; Yu, Q.; Zhang, Y. M.; Liu, Y. Chem. Commun. 2019, 55, 12200.
[61] Bai, L.; Yan, H.; Bai, T.; Feng, Y.; Zhao, Y.; Ji, Y.; Feng, W.; Lu, T.; Nie, Y. Biomacromolecules 2019, 20, 4230.
[62] Baimani, N.; Azar, P. A.; Husain, S. W.; Panahi, H. A.; Mehramizi, A. J. Chromatogr. A 2018, 1571, 38.
[63] Helal, A. S.; Mazario, E.; Mayoral, A.; Decorse, P.; Losno, R.; Lion, C.; Ammar, S.; Hemadi, M. Environ. Sci. Nano 2018, 5, 158.
[64] Hong, S.; Li, Z.; Li, C.; Dong, C.; Shuang, S. Appl. Surface Sci. 2018, 427, 1189.
[65] Alsbaiee, A.; Smith, B. J.; Xiao, L.; Ling, Y.; Helbling, D. E.; Dichtel, W. R. Nature 2016, 529, 190.
[66] Xu, G.; Xie, X.; Qin, L.; Hu, X.; Zhang, D.; Xu, J.; Li, D.; Ji, X.; Huang, Y.; Tu, Y.; Jiang, L.; Wei, D. Green Chem. 2019, 21, 6062.
[67] Wang, J.; Wang, X.; Zhang, X. J. Mater. Chem. A 2017, 5, 4308.
[68] Lenohardt, E. E.; Meador, M. A. B.; Wooley, K. L. Chem. Mater. 2018, 30, 6226.
[69] Mizuno, S.; Asoh, T. A.; Takashima, Y.; Harada, A.; Uyama, H. Polym. Degrad. Stability 2019, 160, 136.
[70] Kretschmann, O.; Choi, S. W.; Miyauchi, M.; Tomatsu, I.; Harada, A.; Ritter, H. Angew. Chem. Int. Ed. 2006, 45, 4361.
[71] Cheng, H.; Fan, X.; Wu, C.; Wang, X.; Wang, L. J.; Loh, X. J.; Li, Z.; Wu, Y. L. Macromol. Rapid Commun. 2019, 40, 1800207.
[72] Shukula, A.; Singh, A. P.; Ray, B.; Aswal, V.; Kar, A. G.; Maiti, P. J. Colloid Interface Sci. 2019, 534, 215.
[73] Cocq, A.; Rousseau, C.; Bricout, H.; Oliva, E.; Bonnet, V.; Djedaini-Pilard, F.; Monflier, E.; Tilloy, S. Eur. J. Org. Chem. 2019, 4863.
[74] Furlan, A. L.; Buchoux, S.; Miao, Y.; Banchet, V.; Leteve, M.; Lambertyn, V.; Michel, J.; Sarazin, C.; Bonnet, V. New J. Chem. 2018, 42, 20171.
[75] Arslan, M.; Sanyal, R.; Sanyal, A. Polym. Chem. 2020, 11, 615.
[76] Seo, J. H.; Kakinoki, S.; Inoue, Y.; Yamaoka, T.; Ishihara, K.; Yui, N. J. Am. Chem. Soc. 2013, 135, 5513.
[77] Zhang, Y.; Zhou, Q.; Jia, S.; Lin, K.; Fan, G.; Yuan, J.; Yu, S.; Shi, J. ACS Appl. Mater. Interfaces 2019, 11, 46427.
[78] Rajendran, A. K.; Arisaka, Y.; Iseki, S.; Yui, N. ACS Biomater. Sci. Eng. 2019, 5, 5652.
[79] Srinivasachari, S.; Fichter, K. M.; Reineke, T. M. J. Am. Chem. Soc. 2008, 130, 4618.
[80] Li, J.; Yang, C.; Li, H.; Wang, X.; Goh, S. H.; Ding, J. L.; Wang, D. Y.; Leong, K. W. Adv. Mater. 2006, 18, 2969.
[81] Zhang, J.; Zhang, L.; Li, S.; Yin, C.; Li, C.; Wu, W.; Jiang, X. ACS Biomater. Sci. Eng. 2018, 4, 1963.
[82] Zhang, Y.; Zhang, Z.; Chen, W.; Li, C.; Wu, W.; Jiang, X. Acta Polym. Sinica 2017, 48, 306(in Chinese). (张亚军, 张正奎, 陈伟芝, 李成, 武伟, 蒋锡群, 高分子学报, 2017, 48, 306.)
[83] Kim, H.; Han, J.; Park, J. H. J. Control. Release 2020, 319, 77.
[84] Li, X.; Liu, H.; Li, J.; Deng, Z.; Li, L.; Liu, J.; Yuan, J.; Gao, P.; Yang, Y.; Zhong, S. Colloids Surf. B:Biointer. 2019, 183, 110425.
[85] Huang, T.; Sheng, G.; Manchanda, P.; Emwas, A. H.; Lai, Z.; Nunes, S. P.; Peinemann, K. V. Sci. Adv. 2019, 5, eaax6976.
[86] Pierre, A. C.; Pajonk, G. M. Chem. Rev. 2002, 102, 4243.
[87] Wang, J.; Wei, Y.; He, W.; Zhang, X. RSC Adv. 2014, 4, 51146.
[88] Wang, J.; Zhang, Y.; Wei, Y.; Zhang, X. Micropor. Mesopor. Mater. 2015, 218, 192.
[89] Wang, J.; Zhang, Y.; Zhang, X. J. Mater. Chem. A 2016, 4, 11408.
[90] Li, X.; Wang, J.; Zhao, Y.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 16901.
[91] Liu, R.; Wang, J.; Du, Y.; Liao, J.; Zhang, X. J. Solid State Chem. 2019, 279, 120971.
[92] Jiang, L.; Kato, K.; Mayumi, K.; Yokoyama, H.; Ito, K. ACS Macro Lett. 2017, 6, 281.
[93] Matias, T.; Marques, J.; Conceicao, F.; Maleki, H.; Quina, M. J.; Gando-Ferreira, L.; Valente, A. J. M.; Portugal, A.; Duraes, L. J. Sol-Gel Sci. Technol. 2017, 84, 409.
[94] Zhou, K.; Li, Y.; Li, Q.; Du, Q.; Wang, D.; Sui, K.; Wang, C.; Li, H.; Xia, Y. J. Polym. Environ. 2018, 26, 3362.
[95] Jia, H.; Tian, Q.; Xu, J.; Lu, L.; Ma, X.; Yu, Y. Microchim. Acta 2018, 185, 517.
[96] Xie, Y.; Tu, X.; Ma, X.; Fang, Q.; Lu, L.; Yu, Y.; Liu, G.; Liu, C. Nanotechnology 2019, 30, 185502.
[97] Noda, Y.; Hayashi, Y.; Ito, K. J. Appl. Polym. Sci. 2014, 131, 40509.
[98] Li, S.; Wang, J.; Gao, P.; Ye, L.; Zhang, A.; Feng, Z. G. Sci. China Chem. 2012, 55, 1115.
[99] Li, S.; Wang, J.; Jiang, L.; Ye, L.; Zhang, A.; Feng, Z. G. Chin. J. Chem. 2012, 30, 2453.
[100] Okumura, Y.; Ito, K. Adv. Mater. 2001, 13, 48.
[101] Araki, J.; Ito, K. Soft Matter 2007, 3, 1456.
[102] Voorhaar, L.; Hoogenboom, R. Chem. Soc. Rev. 2016, 45, 4013.
[103] Tan, M.; Wang, J.; Song, W.; Fang, J.; Zhang, X. J. Mater. Chem. A 2019, 7, 1244.
[104] Buwalda, S. J.; Boere, K. W. M.; Dijkstra, P. J.; Feijen, J.; Ver-monden, T.; Hennink, W. E. J. Control. Release 2014, 190, 254.
[105] Shinohaea, Y.; Kayashima, K.; Okumura, Y.; Zhao, C.; Ito, K.; Amemiya, Y. Macromolecules 2006, 39, 7386.
Outlines

/