Full Papers

Synthesis and Fluorescence Study of the Novel PbS@P(NIPAM-co-TSt) Complexes

  • Wang Chengzhi ,
  • Li Run ,
  • Cheng Hao ,
  • Jiang Tao ,
  • Yin Ming ,
  • Chen Xin ,
  • Jiang Jinqiang ,
  • Liu Xiaoya
Expand
  • School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122

Received date: 2012-03-20

  Online published: 2012-06-11

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20704017, 50973044) and the Program for New Century Excellent Talents in University (NCET-10-0452).

Abstract

Nowadays, the environmental sensitive polymer complexes play a more and more important role in the field of science study. Herein we demonstrate that the alkylisothiouronium-containing styrene monomer (TSt) was synthesized via 4-vinylbenzyl chloride and thiourea, which could be copolymerized with NIPAM to synthesize the temperature sensitive polymer of P(NIPAM-co-TSt) by radical polymerization. Then, the PbS complexes of PbS@P(NIPAM-co-TSt) were prepared on the basis of the interaction between alkylisothiouronium and Pb(AcO)2·3H2O in the aqueous solution of weakly alkaline. Its chemical structure was characterized by detail. For example, Fourier transformation infrared (FTIR), nuclear magnetic resonance (1H NMR), XRD (X-ray diffraction) and fluorescence spectrum to ensure the synthesis of PbS@P(NIPAM-co-TSt) complex. Besides, nanometer granularity apparatus, dynamic light scattering (DLS) and transmission electron microscope (TEM) were employed to survey the size and physiognomy of polymer micelles and complexes. The photoluminescence properties were also studied. It was found that PbS@P(NIPAM-co-TSt) complex exhibits characteristic fluorescence intensity, which was promoted by the PbS nanoparticles. Meanwhile, its fluorescence intensity increased along with the temperature, which very consists with the LCST (lower critical solution temperature) characteristic of PNIPAM. The results indicated that its fluorescene intensity would go up with the addition of the complex’s concentration and the raising of the temperature. The diameter of PbS@P(NIPAM-co-TSt) complex can also be reduced obviously by introducing the PbS nanoparticles to the system. What is more, its diameter had a declining trend when the temperature exceeded the LCST of it and kept stable in the end. Thus, on the one hand, these kinds of complexes possess the properties in both polymers and nanoparticles, such as PbS. On the other hand, we think that such environmental sensitive complexes must have a bright future, and also could make a lot of potential applications as optical materials in a great many areas, such as biological, medical science, cells, chemistry and so on.

Cite this article

Wang Chengzhi , Li Run , Cheng Hao , Jiang Tao , Yin Ming , Chen Xin , Jiang Jinqiang , Liu Xiaoya . Synthesis and Fluorescence Study of the Novel PbS@P(NIPAM-co-TSt) Complexes[J]. Acta Chimica Sinica, 2012 , 70(16) : 1704 -1708 . DOI: 10.6023/A12030028

References

[1] Priester, C.; Lannoo, M. Curr. Opin. Solid State Mater. Sci. 1997, 2, 716.

[2] Nikodem, T.; Dominik, J.; Han, M. Y.; Julius, V. G. Prog. Polym. Sci. 2009, 34, 393.

[3] Poznyak, S. K.; Talapin, D. V.; Shevchenko, E. V.; Weller, H. Nano Lett. 2004, 4, 693.   

[4] Michael, T. Ann. Phys. 2004, 13, 5.

[5] Zhang, B. B.; Xing, D.; Lin, C.; Guo, F. F.; Zhao, P.; Wen, X. J.; Bao, Z. H.; Shi, D. L. J. Nanopart. Res. 2011, 13, 2407.

[6] Lee, D. K.; Lee, Y.-k. Macromol. Res. 2010, 10, 1007.   

[7] Chen, Y.; Rosenzweig, Z. Anal. Chem. 2002, 74, 5132.

[8] Koh, W.-k.; Saudari, S. R.; Fafarman, A. T.; Kagan, C. R.; Murray, C. B. Nano Lett. 2011, 11, 4764.   

[9] Wang, C.-W.; Oskooei, A.; Sinton, D.; Moffitt, M. G. Langmuir 2010, 26, 716.   

[10] Wang, M. F.; Felorzabihi, N.; Guerin, G.; Haley, J. C.; Scholes, G. D.; Winnik, M. A. Macromolecules 2007, 40, 6377.   

[11] Wang, M. F.; Zhang, M.; Qian, J. S.; Zhao, F.; Shen, L.; Scholes, G. D.; Winnik, M. A. Langmuir 2009, 25, 11732.   

[12] Yu, X. Y.; Liao, J. Y.; Qiu, K. Q.; Kuang, D. B.; Su, C. Y. Acs Nano 2010, 10, 1021.

[13] Zhu, L. J.; Shi, Y. F.; Tu, C. L.; Wang, R. B.; Pang, Y.; Qiu, F.; Zhu, X. Y.; Yan, D. Y.; He, L.; Jin, C. Y.; Zhu, B. S. Langmuir 2010, 26, 8875.   

[14] Yang, Y.-C.; Lu, H.-H.; Wang, W.-T.; Liau, I. Anal. Chem. 2011, 83, 8267.

[15] Yusuf, H.; Kim, W.-G.; Lee, D. H.; Guo, Y. Y.; Moffitt, M. G. Langmuir 2007, 23, 868.   

[16] Wang, C.-W.; Oskooei, A.; Sinton, D.; Moffitt, M. G. Langmuir 2010, 26, 716.   

[17] Agrawal, M.; Rubio-Retama, J.; Zafeiropoulos, N. E.; Gaponik, N.; Gupta, S.; Cimrova, V.; Lesnyak, V.; Lopez-Cabarcos, E.; Tzavalas, S.; Rojas-Reyna, R.; Eychmuller, A.; Stamm, M. Langmuir 2008, 24, 9820.   

[18] Hou, Y.; Ye, J.; Gui, Z.; Zhang, G. Z. Langmuir 2008, 24, 9682.   

[19] Janczewski, D.; Tomczak, N.; Han, M.-Y. Macromolecules 2009, 42, 1801.   

[20] Guo, J.; Yang, W. L.; Wang, C. C.; He, J.; Chen, J. Y. Chem. Mater. 2006, 18, 5554.

[21] Ye, J.; Hou, Y.; Zhang, G. Z.; Wu, C. Langmuir 2008, 24, 2727.   

[22] Ye, F. M.; Wu, C. F.; Jin, Y. H.; Chan, Y.-H.; Zhang, X. J.; Chiu, D. T. J. Am. Chem. Soc. 2011, 133, 8146.

[23] Lao, U. L.; Mulchandani, A.; Chen, W. J. Am. Chem. Soc. 2006, 128, 14756.

[24] Shu, Q. Z.; Chen, X.; Chen, K. H.; Jiang, J. Q.; Ni, Z. B.; Zhang, H. W.; Liu, X. Y.; Chen, M. Q. Acta Phys.-Chim. Sin. 2010, 26, 2845. (舒巧珍, 陈欣, 陈开花, 江金强, 倪忠斌, 张红武, 刘晓亚, 陈明清, 物理化学学报, 2010, 26, 2845.)

[25] Carrot, G.; Scholz, S. M.; Plummer, C. J. G.; Hilborn, J. G.; Hedrick, J. L. Chem. Mater. 1999, 11, 3571.

[26] Nair, P. S.; Radhakrishnan, T.; Revaprasadu, N.; Kolawole, G. A.; O'Brien, P. Chem. Commun. 2002, (6), 564. Dong, Y. M.; Lu, J. M.; Xu, Q. F. J. Macromol. Sci. 2008, 45, 37.

Outlines

/