Special Topic

Electrocatalysis on Oxidation of Methanol and SERS Investigations of Au@Pt Monolayer Film

Expand
  • College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123

Received date: 2012-02-22

  Revised date: 2012-05-14

  Online published: 2012-06-16

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21073128, 21033007, 20973120).

Abstract

Au@Pt core-shell nanoparticles were successfully synthesized via the seed-mediate growth method and were self-assembled to be a monolayer film at the water/hexane interface. After being carefully transferred onto a glassy carbon (GC) electrode, a monolayer film electrode was fabricated with high Au@Pt surface-to-volume ratio. It was found that good dispersion of Au@Pt core-shell nanoparticles on the surface of GC electrode was achieved, resulting in the uniform monolayer film electrode. It was resulted that the as-prepared monolayer film electrode exhibited high electrocatalytic activity for methanol oxidation. Moreover, the monolayer film exhibited excellent surface enhanced Raman spectroscopic (SERS) activity due to the long-range enhancement effect from the Au nanoparticles core, which was well recognized as a good SERS substrate. Therefore, it can be served as a SERS substrate for investigating the surface adsorption and reactions at the molecular level. According to these advantages of the monolayer film electrode, the reaction process of methanol oxidation was monitored by in situ SERS detection via combining the strong SERS activity and the high electrocatalytic activity of the monolayer film electrode. The data supplies the basis on analyzing the mechanism of methanol oxidation on Au@Pt film/GC electrode.

Cite this article

Zhang Caiping, Guo Qinghua, Xu Minmin, Yuan Yaxian, Yao Jianlin, Gu Renao . Electrocatalysis on Oxidation of Methanol and SERS Investigations of Au@Pt Monolayer Film[J]. Acta Chimica Sinica, 2012 , 70(12) : 1327 -1331 . DOI: 10.6023/A1202222

References

1 Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Chem. Phys. Lett. 1974, 26, 163.

2 Camden, J. P.; Dieringer, J. A.; Zhao, J.; Van Duyne, R. P. Acc. Chem. Res. 2008, 41, 1653.

3 Tian, Z.-Q.; Ren, B.; Li, J.-F.; Yang, Z.-L. Chem. Commun. 2007, 34, 3514.

4 Li, J.-F.; Huang, Y.-F.; Ding, Y.; Yang, Z.-L.; Li, S.-B.; Zhou, X.-S.; Fan, F.-R.; Zhang, W.; Zhou, Z.-Y.; Wu, D.-Y.; Ren, B.; Wang, Z.-L.; Tian, Z.-Q. Nature 2010, 464, 392.

5 Shi, M.-Q.; Lang, X.-L.; Ma, C.-A.; Chu, Y.-Q.; Chen, Z.-Y.; Yu, B. Acta Chim. Sinica 2011, 69, 1029 (in Chinese).(施梅勤, 郎小玲, 马淳安, 褚有群, 陈赵扬, 俞彬, 化学学报, 2011, 69, 1029.)

6 Zhao, D.; Wang, Y.-H.; Yan, B.; Xu, B.-Q. J. Phys. Chem. C 2009, 113, 1242.

7 Lu, L.-H.; Wang, H.-S.; Xi, S.-Q.; Zhang, H.-J. J. Mater. Chem. 2002, 12, 156.

8 Hu, L.-F.; Chen, M.; Fang, X.-S.; Wu, L.-M. Chem. Soc. Rev. 2012, 41, 1350.

9 Lin, Y.; Skaff, H.; Emrick, T.; Dinsmore, A. D.; Russell, T. P. Science 2003, 299, 226.

10 Li, Y.-J.; Huang, W.-J.; Sun, S.-G. Angew. Chem., Int. Ed. 2006, 45, 2537.

11 Hu, J.-W.; Zhao, B.; Xu, W.-Q.; Fan, Y.-G.; Li, B.-F.; Ozaki, Y. J. Phys. Chem. B 2002, 106, 6500.

12 Zhang, X.-J.; Mei, J.-H.; Ni, D.-D.; Guo, Q.-H.; Xu, M.-M.; Yao, J.-L.; Gu, R.-A. Chem. J. Chin. Univ. 2011, 32, 1563 (in Chinese).(张雪姣, 梅金华, 倪丹丹, 郭清华, 徐敏敏, 姚建林, 顾仁敖, 高等学校化学学报, 2011, 32, 1563.)

13 Frens, G. J. Nature Phys. Sci. 1973, 241, 20.

14 Li, J.-F. Ph.D. Dissertation, Xiamen University, Xiamen, 2010 (in Chinese).(李剑锋, 博士论文, 厦门大学, 厦门, 2010.)

15 Lin, Y.-H.; Cui, X.-L.; Yen, C. H.; Wai, C. M. Langmuir 2005, 21, 11474.

16 Tian, Z.-Q.; Ren, B.; Mao, B.-W. J. Phys. Chem. B 1997, 101, 1338.

17 Ren, B.; Li, X.-Q.; She, C.-X.; Wu, D.-Y.; Tian, Z.-Q. Electrochim. Acta 2000, 46, 193.Ren, B.; Huang, Q.-J.; Cai, W.-B. J. Electroanal. Chem. 1996, 415, 175.
Outlines

/