Full Papers

Multi-responsive Hyperbranched Star Copolymer: Synthesis, Self-assembly and Controlled Release

  • Zhang Wenjian ,
  • Fan Wei ,
  • Li Min ,
  • Hong Chunyan ,
  • Pan Caiyuan
Expand
  • CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026

Received date: 2012-05-05

  Online published: 2012-06-19

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20974103, 21074121 and 21090354).

Abstract

Multi-responsive (temperature, pH and redox) hyperbranched star polymers, poly(2-(2-methoxyethoxy)ethyl methacrylate)-star-poly(dimethylaminoethyl methacrylate) (H-PMEO2MA-star-PDMAEMA) have been successfully synthesized by self-condensing vinyl polymerization of disulfide-based inimer and MEO2MA first, and subsequently atom transfer radical polymerization of DMAEMA with H-PMEO2MA as macroinitiator. The Mn and Mw/Mn of the H-PMEO2MA were 8300 g/mol and 2.61, respectively. H-PMEO2MA-star-PDMAEMAs with different molecular weights were obtained by adjusting the polymerization time. The molecular weight of the hyperbranched star copolymer increased but the polydispersity index (PDI) decreased with increasing polymerization time. Since the PDI of the PDMAEMA formed by ATRP is low, with the molecular weight increase of the PDMAEMA, the relative amount of H-PMEO2MA in the hyperbranched star copolymers becomes less; as a result, the influence of the core H-PMEO2MA’s PDI on the hyperbranched star copolymers decreases. UV/Vis TU-1901 spectrophotometer was used to investigate the lower critical solution temperature (LCST) of the resultant polymer. The LCST of H-PMEO2MA is relatively low (2—10 ℃). The effects of the compositions and pH of the solution on LCST of the hyperbranched star copolymers were studied. The LCST increased with the chain length increase of PDMAEMA. The pH of the solution has a significant impact on the LCST of the hyperbranched star copolymers. With decrease of the pH value, the protonation degree of PDMAEMA increased, the repulsion between the chain segments enhanced, making the aggregation of the H-PMEO2MA-star-PDMAEMA molecules become difficult, and as a result, the water-solubility of the hyperbranched star copolymers enhanced. In addition, when temperature of the aqueous solution raised from 2 ℃ to room temperature, the spherical micelles with H-PMEO2MA as core and PDMAEMA as shell were formed. During the formation of spherical micelles in the aqueous solution of H-PMEO2MA-star-PDMAEMA and Nile Red, the Nile Red was successfully encapsulated in the micelles. The controlled release of this system, in which Nile Red was used as model drug, was investigated, the results showed that this system is pH and redox-responsive, and may have potential application in drug delivery.

Cite this article

Zhang Wenjian , Fan Wei , Li Min , Hong Chunyan , Pan Caiyuan . Multi-responsive Hyperbranched Star Copolymer: Synthesis, Self-assembly and Controlled Release[J]. Acta Chimica Sinica, 2012 , 70(16) : 1690 -1696 . DOI: 10.6023/A12040167

References

[1] Sun, T. M.; Du, J. Z.; Yan, L. F.; Mao, H. Q.; Wang, J. Biomaterials 2008, 29, 4348.   
[2] Huang, X. W.; Gu, L. N.; Lu, G. L.; Huang, X.; Zhang, Y. Q.; Huang, X. Y. Acta Chim. Sinica 2009, 67, 1363. (黄晓炜, 顾丽娜, 陆国林, 黄啸, 张亚琴, 黄晓宇, 化学学报, 2009, 67, 1363.)
[3] Zhu, Y. M.; Zhang, Y.; Liu, Z. L.; Lang, M. D. Acta Chim. Sinica 2010, 68, 2449. (朱亚明, 张琰, 刘子路, 郎美东, 化学学报, 2010, 68, 2449.)
[4] Lv, L. P.; Xu, J. P.; Liu, X. S.; Liu, G. Y.; Yang, X. A.; Ji, J. A. Macromol. Chem. Phys. 2010, 211, 2292.
[5] Sun, J. T.; Hong, C. Y.; Pan, C. Y. J. Phys. Chem. C 2010, 114, 12481.
[6] Morishima, Y. Angew. Chem. Int. Ed. 2007, 46, 1370.
[7] Pan, D. K.; Zhang, H. Acta Chim. Sinica 2011, 69, 1545. (盘登科, 张慧, 化学学报, 2011, 69, 1545.)
[8] Wang, Y.; Li, X.; Hong, C. Y.; Pan, C. Y. J. Polym. Sci. Part A: Polym. Chem. 2011, 49, 3280.
[9] York, A. W.; Kirkland, S. E.; McCormick, C. L. Adv. Drug Delivery Rev. 2008, 60, 1018.
[10] Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J. Q.; Perrier, S. Chem. Rev. 2009, 109, 5402.
[11] Han, S.; Hagiwara, M.; Ishizone, T. Macromolecules 2003, 36, 8312.   
[12] Lutz, J. F.; Hoth, A. Macromolecules 2006, 39, 893.   
[13] Luzon, M.; Boyer, C.; Peinado, C.; Corrales, T.; Whittaker, M.; Tao, L.; Davis, T. P. J. Polym. Sci. Part A: Polym. Chem. 2010, 48, 2783.
[14] Rikkou, M. D.; Patrickios, C. S. Prog. Polym. Sci. 2011, 36, 1079.
[15] Li, C. M.; Madsen, J.; Armes, S. P.; Lewis, A. L. Angew. Chem. Int. Ed. 2006, 45, 3510.
[16] Hong, C. Y.; You, Y. Z.; Wu, D. C.; Liu, Y.; Pan, C. Y. J. Am. Chem. Soc. 2007, 129, 5354.
[17] Wang, L.; Li, C. M.; Ryan, A. J.; Armes, S. P. Adv. Mater. 2006, 18, 1566.   
[18] Yang, W.; Pan, C. Y.; Liu, X. Q.; Wang, J. Biomacromolecules 2011, 12, 1523.   
[19] Tsarevsky, N. V.; Huang, J.; Matyjaszewski, K. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 6839.
[20] You, Y. Z.; Hong, C. Y.; Pan, C. Y.; Wang, W.-P. Adv. Mater. 2004, 16, 1953.   
[21] Jia, Z. F.; Yan, D. Y. J. Polym. Sci. Part A: Polym. Chem. 2005, 43, 3502.
[22] Paris, R.; Quijada-Garrido, I. Eur. Polym. J. 2009, 45, 3418.
[23] Zhou, Y. F.; Yan, D. Y.; Dong, W. Y.; Tian, Y. J. Phys. Chem. B 2007, 111, 1262.
[24] Baines, F. L.; Billingham, N. C.; Armes, S. P. Macromolecules 1996, 29, 3416.   
[25] Xiao, G. L.; Hu, Z. B.; Zeng, G. P.; Wang, Y. Q.; Huang, Y. Q.; Hong, X. L.; Xia, B. L.; Zhang, G. Y. J. Appl. Polym. Sci. 2012, 124, 202.
[26] Ren, F.; Chen, X. N.; Xia, Y. Z.; Shi, S. X.; Jiao, S. K. Acta Polym. Sin. 2007, (9), 838. (任芳, 陈晓农, 夏宇正, 石淑先, 焦书科, 高分子学报, 2007, (9), 838.)  
[27] Gillies, E. R.; Jonsson, T. B.; Frechet, J. M. J. J. Am. Chem. Soc. 2004, 126, 11936. Jiang, X. G.; Zhao, B. Macromolecules 2008, 41, 9366.  
Outlines

/