Article

Theoretical Studies on Structures of Heterometal String Complexes [CuCuM(npa)4Cl]+ (M=Pt, Pd, Ni) under the Electric Field

  • Huang Xiao ,
  • Tan Ying ,
  • Xu Xuan ,
  • Xu Zhiguang
Expand
  • a School of Chemistry & Environment, South China Normal University, Guangzhou 510006;
    b Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006;
    c Key Laboratory of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006;
    d Engineering Research Center of Materials and Technology for Electrochemical Energy Storage, Ministry of Education of China, South China Normal University, Guangzhou 510006

Received date: 2012-03-23

  Online published: 2012-08-03

Supported by

Project supported by the Natural Science Foundation of Guangdong Province, China (No. 9151063101000037), Research Project of Ministry of Education and Guangdong Province, China (No. 2010B090400184), Program of Talent Introduction of Guangdong Province, China (No. C10133), and Science and Technology Program of Guangzhou City, China (No. 2011J4300063).

Abstract

The geometrical and electronic structures of heterometal string complexes [CuCuM(npa)4Cl]+ (1:M=Pt, 2:M=Pd, 3:M=Ni) were investigated theoretically by density functional theory UBP86 method with incorporating the external electric field along the metal chain in Cl→M(r) and M(r)→Cl two directions. In general, under the electric field, the spin densities of the high potential end decrease while that of the low potential end increase, and the negative charge transfers to the high potential end. When the electric field enhances, the molecular energy decreases and the dipole moment increases linearly. With the increase of the electric field, the spatial distribution of frontier orbitals changes regularly, and the energies of frontier occupied orbitals increase in the sensitive order of πnb**M(r)-N(r), which leads to the frontier occupied orbital level crossing. When the Cl→M(r) electric field is applied, the spin densities delocalize from Cu to M(r), and the positive charge transfers from Cu to M(r). Moreover, the molecular energy decreases more sensitively. Also in the Cl→M(r) electric field, the contractions of Cu-Cu and Cu-M(r) distances and the decrease of the frontier orbital energy gap are beneficial to the electron transport of the metal string complexes. However, under the M(r)→Cl electric field, the distances of Cu-Cu and Cu-M increase. The effect of M(r)→Cl electric field on the molecular energy, spin density and charge density of metal atoms are less obvious than that of Cl→M(r) electric field. When the electric field increases to some extent, the spin densities of the metal atoms remain stable values, and the changes of them are obviously asymmetric in Cl→M(r) and M(r)→Cl directions. Therefore, 1~3 may have the potential application of molecular rectifier.

Cite this article

Huang Xiao , Tan Ying , Xu Xuan , Xu Zhiguang . Theoretical Studies on Structures of Heterometal String Complexes [CuCuM(npa)4Cl]+ (M=Pt, Pd, Ni) under the Electric Field[J]. Acta Chimica Sinica, 2012 , 70(18) : 1979 -1986 . DOI: 10.6023/A12030051

References

[1] El-Hendawy, M. M.; El-Nahas, A. M.; Awad, M. K. J. Phys. Chem. C 2010, 114, 21728.  

[2] Liu, I. P. C.; Chen, C. H.; Chen, C. F.; Lee, G. H.; Peng, S. M. Chem. Commun. 2009, 577.

[3] Wu, L. P.; Field, P.; Morrissey, T.; Murphy, C.; Nagle, P.; Hathaway, B.; Simmons, C.; Thornton, P. J. Chem. Soc. Dalton Trans. 1990, 12, 3835.

[4] Aduldecha, S.; Hathaway, B. J. Chem. Soc. Dalton Trans. 1991, 4, 993.

[5] Cotton, F. A.; Daniels, L. M.; Murillo, C. A.; Pascual, I. J. Am. Chem. Soc. 1997, 119, 10223.  

[6] Cotton, F. A.; Daniels, L. M.; Jordan, G. T.; IV; Murillo, C. A. J. Am. Chem. Soc. 1997, 119, 10377.  

[7] Sheu, J. T.; Lin, C. C.; Chao, I.; Wang, C. C.; Peng, S. M. Chem. Commun. 1996, 315.  

[8] Shieh, S. J.; Chou, C. C.; Lee, G. H.; Wang, C. C.; Peng, S. M. Angew. Chem. Int. Ed. Engl. 1997, 36, 56.  

[9] Peng, S. M.; Wang, C. C.; Jang, Y. L.; Chen, Y. H.; Li, F. Y.; Mou, C. Y.; Leung, M. K. J. Magn. Magn. Mater. 2000, 209, 80.  

[10] Ismayilov, R. H.; Wang, W. Z.; Lee, G. H.; Yeh, C. Y.; Hua, S. A.; Song, Y.; Rohmer, M. M.; Bénard, M.; Peng, S. M. Angew. Chem. Int. Ed. 2011, 50, 2045.  

[11] Liu, I. P. C.; Lee, G. H.; Peng, S. M.; Bénard, M.; Rohmer, M. M. Inorg. Chem. 2007, 46, 9602.  

[12] Huang, G. C.; Bénard, M.; Rohmer, M. M.; Li, L. A.; Chiu, M. J.; Yeh, C. Y.; Lee, G. H.; Peng, S. M. Eur. J. Inorg. Chem. 2008, 1767.  

[13] Tsai, T. W.; Huang, Q. R.; Peng, S. M.; Jin, B. Y. J. Phys. Chem. C 2010, 114, 3641.  

[14] Georgiev, V. P.; McGrady, J. E. Inorg. Chem. 2010, 49, 5591.  

[15] Georgiev, V. P.; McGrady, J. E. J. Am. Chem. Soc. 2011, 133, 12590.  

[16] Li, Y. W.; Zhao, J. W.; Yin, X.; Yin, G. P. J. Phys. Chem. A 2006, 110, 11130.  

[17] Zhang, Y.; Ye, Y. F.; Li, Y. W.; Yin, X.; Liu, H. M.; Zhao, J. W. J. Mol. Struct. (Theochem) 2007, 802, 53.  

[18] Yan, A.-Y.; Song, X.-S.; Jiang, M. Acta Chim. Sinica 2009, 67, 1875. (闫安英, 宋晓书, 姜明, 化学学报, 2009, 67, 1875.)

[19] Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO, Version 3.1, Gaussian, Inc., Pittsburg, PA, CT, 2003.  

[20] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M., Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Naka, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G., Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01, Gaussian Inc., Wallingford CT, 2003.  

[21] Lin, S. Y.; Chen, I. W. P.; Chen, C. H.; Hsieh, M. H.; Yeh, C. Y.; Lin, T. W.; Chen, Y. H.; Peng, S. M. J. Phys. Chem. B 2004, 108, 959.  

[22] Seminario, J. M.; Zacarias, A. G.; Tour, J. M. J. Am. Chem. Soc. 2000, 122, 3015.Li, Y. W.; Yao, J. H.; Yang, C. L.; Zhong, S. K.; Yin, G. P. Mol. Simulat. 2009, 35, 301.  

Outlines

/