Article

Ab Initio Calculation of M-H Bond Dissociation Energies of Cr-Group Metal Hydrides

  • Tang Shiya ,
  • Fu Yao ,
  • Guo Qingxiang
Expand
  • Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2012-07-23

  Online published: 2012-08-16

Supported by

Supporting information for this article is available free of charge via the Internet at http://sioc-journal.cn. Project supported by the National Natural Science Foundation of China (Nos. 20832004, 20972148), Chinese Academy of Science (KJCX2-EW-J02) and the Fundamental Research Funds for the Central Universities. Computations were performed at the Supercomputing Center of USTC and Shanghai.

Abstract

The metal-hydrogen M-H bond homolysis of the Cr-group metal hydrides is a key process in the radical cyclization reactions mediated by these compounds, which directly affects the catalytic efficiency and selectivity of the reactions. Accurate prediction of M-H BDEs (bond dissociation energies) using theoretical methods not only improves our understanding about the structures and properties of the Cr-group metal hydride based catalysts, but also provides important insights into design of new generations of catalysts for radical cyclization reactions. For this purpose, we have calculated the M-H BDEs with different density functional theory methods (including MPW1K, MPW1b95, MPW1PW91, PBE1PBE, B3P86, O3LYP, TPSSH, MPW1KCIS, and TPSS) and compared the theoretical predictions with 14 reliable experimental M-H BDE values recently reported for the Cr-group metal hydrides. It is found that the B3P86/lanl2dz+p method could accurately predict the M-H BDEs with a precision of 1.6 kcal/mol. Using the B3P86/lanl2dz+p method, we next studied the structure-property relationship for the M-H BDEs in Cr-group metal hydrides. As to the periodical trends, we found that the effects of the metals on the M-H BDEs are greater than the effects of the ligands. The M-H BDEs increase in the order:first row metal

Cite this article

Tang Shiya , Fu Yao , Guo Qingxiang . Ab Initio Calculation of M-H Bond Dissociation Energies of Cr-Group Metal Hydrides[J]. Acta Chimica Sinica, 2012 , 70(18) : 1923 -1929 . DOI: 10.6023/A12070460

References

[1] Smith, D. B.; Pulling, M. E.; Norton, J. R. J. Am. Chem. Soc. 2007, 129, 770.

[2] Jasperse, C. P.; Curran, D. P.; Fevig, T. L. Chem. Rev. 1991, 91, 1237.

[3] (a) Choi, J.; Tang, L. H.; Norton, J. R. J. Am. Chem. Soc. 2007, 129, 234;

(b) Tang, L. H.; Papish, E. T.; Abramo, G. P.; Norton, J. R.; Baik, M. H.; Friesner, R. A.; Rappe, A. J. Am. Chem. Soc. 2003, 125, 10093;

(c) Eisenberg, D. C.; Lawrie, C. J. C.; Moody, A. E.; Norton, J. R. J. Am. Chem. Soc. 1991, 113, 4888;

(d) Pleune, B.; Morales, D.; Meunier-Prest, R.; Richard, P.; Collange, E.; Fettinger, J. C.; Poli, R. J. Am. Chem. Soc. 1999, 121, 2209;

(e) Studer, A.; Amrein, S. Synthesis 2002, 7, 835.

[4] O'Connor, J. M.; Friese, S. J. Organometallics 2008, 27, 4280.   

[5] Hoff group: (a) Kiss, G.; Zhang, K.; Mukerjee, S. L.; Hoff, C. D. J. Am. Chem. Soc. 1990, 112, 5657;

(b) Lang, R. F.; Ju, T. D.; Kiss, G.; Hoff, C. D.; Bryan, J. C.; Kubas, G. J. J. Am. Chem. Soc. 1994, 116, 7917.

[6] Tilset group : (a) Tilset, M. J. Am. Chem. Soc. 1992, 114, 2740;

(b) Skagestad, V.; Tilset, M. J. Am. Chem. Soc. 1993, 115, 5077;

(c) Tilset, M.; Hamon, J. R.; Hamon, P. Chem. Commun. 1998, 765.

[7] Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies, 1st ed., CRC Press, 2007.   

[8] (a) Qi, X.-J.; Li, Z.; Fu, Y.; Guo, Q.-X.; Liu, L. Organometallics 2008, 27, 2688;   

(b) Qi, X.-J.; Fu, Y.; Liu, L.; Guo, Q.-X. Organometallics 2007, 26, 4197;   

(c) Qi, X.-J.; Liu, L.; Fu, Y.; Guo, Q.-X. Organometallics 2006, 25, 5879.   

[9] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr. J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision C. 02, Gaussian, Inc., Wallingford CT, 2004.   

[10] Zhao, Y.; Schultz, N. E.; Truhlar, D. G. J. Chem. Theory Comput. 2006, 2, 364.

[11] (a) Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X. J. Chem. Inf. Comput. Sci. 2003, 43, 2005;

(b) Cheng, Y.-H.; Zhao, X.; Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2002, 67, 6638;

(c) Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2003, 68, 262;

(d) Feng, Y.; Liu, L.; Wang, J.-T.; Zhao, S.-W.; Guo, Q.-X. J. Org. Chem. 2004, 69, 3129;

(e) Fu, Y.; Liu, L.; Lin, B.-L.; Mou, Y.; Cheng, Y.-H.; Guo, Q.-X. J. Org. Chem. 2003, 68, 4657  

[12] (a) Hoobler, R. J.; Hutton, M. A.; Dillard, M. M.; Castellani, M. P.; Rheingold, A. L.; Rieger, A. L.; Rieger, P. H.; Richards, T. C.; GeigerId, W. E. Organometallics 1993, 12, 116;   

(b) Goh, L.-Y.; D'aniello, M. J.; Slater, S.; Muetterties, E. L.; Tavanaiepour, I.; Chang, M. I.; Fredrich, M. F.; Day, V. W. Inorg. Chem. 1979, 18, 192.   

[13] (a) Stender, M.; Oesen, H.; Blaurock, S.; Hey-Hawkins, E. Z. Anorg. Allg. Chem. 2001, 627, 980;

(b) Shin, J. H.; Savage, W.; Murphy, V. J.; Bonanno, J. B.; Churchill, D. G.; Parkin, G. J. Chem. Soc., Dalton Trans. 2001, 1732.   

[14] Crystal structures: (a) Schultz, A. J.; Stearley, K. L.; Williams, J. M.; Mink, R.; Stucky, G. D. Inorg. Chem. 1977, 16, 3303;   

(b) Koloski, T. S.; Pestana, D. C.; Carroll, P. J.; Berry, D. H. Organometallics 1994, 13, 489;   

(c) Shin, J. H.; Churchill, D. G.; Bridgewater, B. M.; Pang, K.; Parkin, G. Inorg. Chim. Acta 2006, 359, 2942.

[15] (a) Hylakryspin, I.; Waldman, T. E.; Melendez, E.; Trakarnpruk, W.; Arif, A. M.; Ziegler, M. L.; Ernst, R. D.; Gleiter, R. Organometallics 1995, 14, 5030;   

(b) Vos, D.; Arif, A. M.; Ernst, R. D. J. Organomet. Chem. 1998, 553, 277.

[16] (a) Kaupp, M.; Metz, B.; Stoll, H. Angew. Chem.-Int. Ed. 2000, 39, 4607;

(b) Kaupp, M.; Riedel, S. Inorg. Chim. Acta 2004, 357, 1865.

[17] GonzalezBlanco, O.; Branchadell, V. Organometallics 1997, 16, 5556.   

[18] Bowmaker, G. A.; Schmidbaur, H.; Kruger, S.; Rosch, N. Inorg. Chem. 1997, 36, 1754.   

[19] Gisdakis, P.; Antonczak, S.; Rosch, N. Organometallics 1999, 18, 5044.   

[20] Tandura, S. N.; Shumsky, A. N.; Ugrak, B. I.; Negrebetsky, V. V.; Bylikin, S. Y.; Kolesnikov, S. P. Organometallics 2005, 24, 5227.   

[21] (a) Feng, Y.; Liu, L.; Wang, J.-T.; Li, X.-S.; Guo, Q.-X. Chem. Commun. 2004, 88;

(b) Fang, Y.; Fan, J.-M.; Liu, L.; Li, X.-S.; Guo, Q.-X. Chem. Lett. 2002, 116;

(c) Li, X.-S.; Liu, L.; Schlegel, H. B. J. Am. Chem. Soc. 2002, 124, 9639.
Outlines

/