Review

Research Progress of High-precision Patterns by Directly Inkjet Printing

  • Kuang Minxuan ,
  • Wang Jingxia ,
  • Wang Libin ,
  • Song Yanlin
Expand
  • Laboratory of New Materials, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190

Received date: 2012-05-14

  Online published: 2012-08-17

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 50973117, 21074139, 91127029, 51173190, 20904061, 50625312, U0634004, and 20721061) and 973 Program (Nos. 2009CB930404, 2011CB932303, and 2011CB808400).

Abstract

High-precision patterns have aroused wide attention due to their important applications in high-performance optical/electrical devices. By virtue of easy and direct writing of desired patterns, high throughput and low-cost, inkjet printing has become one of the most promising candidates for the manufacture of patterns, compared with conventional approaches such as photolithography, microcontact printing. Various materials can be precisely deposited on target positions. As a primary focus, improving the precision of printed patterns would greatly enhance the performance of the devices. So far, various approaches have been developed for improving the printing precision. Pattern resolution is limited by the volume of jetted droplet and the area of droplet spreading on substrate. Finer resolution can be achieved through reducing the deposition dimension, i.e. optimization of the chemical composition of ink, chemical/physical modification of substrates, and improvement of printing apparatus. Besides, uniform deposition of functional materials is also essential for fabricating high-precision patterns and high-performance devices. “Coffee ring” is a common phenomenon during the drying process of droplets, which is generated due to the pinning three phase contact line (TCL) and the outward capillary flow in an evaporating droplet. Therefore, homogenous deposition without “coffee ring” effect can be realized by tuning the capillary flow in the droplet and controlling the movement of the TCL as the droplet evaporating. In this paper, we presented the recent research progress for achieving high-precision patterns by inkjet printing, including minimizing the deposition dimension to improve the resolution and avoiding the “coffee ring” effect to achieve high uniformity. These reports will probably promote the development of novel and facile method for high-precision inkjet printing. New trends and research perspectives were briefly discussed at the last section of this review.

Cite this article

Kuang Minxuan , Wang Jingxia , Wang Libin , Song Yanlin . Research Progress of High-precision Patterns by Directly Inkjet Printing[J]. Acta Chimica Sinica, 2012 , 70(18) : 1889 -1896 . DOI: 10.6023/A12050199

References

[1] Hwang, J. K.; Cho, S.; Dang, J. M.; Kwak, E. B.; Song, K.; Moon, J.; Sung, M. M. Nat. Nanotechnol. 2010, 5, 742.  

[2] Tan, C. P.; Cipriany, B. R.; Lin, D. M.; Craighead, H. G. Nano Lett. 2010, 10, 719.  

[3] Minari, T.; Liu, C.; Kano, M.; Tsukagoshi, K. Adv. Mater. 2012, 24, 299.  

[4] Ito, T.; Okazaki, S. Nature 2000, 406, 1027.  

[5] Geissler, M.; Xia, Y. N. Adv. Mater. 2004, 16, 1249.  

[6] Huo, F. W.; Zheng, Z. J.; Zheng, G. F.; Giam, L. R.; Zhang, H.; Mirkin, C. A. Science 2008, 321, 1658.

[7] Xu, H.; Ling, X. Y.; van Bennekom, J.; Duan, X.; Ludden, M. J. W.; Reinhoudt, D. N.; Wessling, M.; Lammertink, R. G. H.; Huskens, J. J. Am. Chem. Soc. 2009, 131, 797.  

[8] Kraus, T.; Malaquin, L.; Schmid, H.; Riess, W.; Spencer, N. D.; Wolf, H. Nat. Nanotechnol. 2007, 2, 570.  

[9] Tekin, E.; Smith, P. J.; Schubert, U. S. Soft Matter 2008, 4, 703.  

[10] Zhang, L.; Liu, H. T.; Zhao, Y.; Sun, X. N.; Wen, Y. G.; Guo, Y. L.; Gao, X. K.; Di, C. A.; Yu, G.; Liu, Y. Q. Adv. Mater. 2012, 24, 436.

[11] van den Berg, A. M. J.; de Laat, A. W. M.; Smith, P. J.; Perelaer, J.; Schubert, U. S. J. Mater. Chem. 2007, 17, 677.  

[12] van Osch, T. H. J.; Perelaer, J.; de Laat, A. W. M.; Schubert, U. S. Adv. Mater. 2008, 20, 343.  

[13] Sele, C. W.; von Werne, T.; Friend, R. H.; Sirringhaus, H. Adv. Mater. 2005, 17, 997.  

[14] Noh, Y. Y.; Zhao, N.; Caironi, M.; Sirringhaus, H. Nat. Nanotechnol. 2007, 2, 784.  

[15] Cui, L. Y.; Li, Y. F.; Wang, J. X.; Tian, E. T.; Zhang, Y. Z.; Song, Y. L.; Jiang, L. J. Mater. Chem. 2009, 19, 5499.

[16] Li, Z. R.; Wang, J. X.; Zhang, Y. Z.; Wang, J. J.; Jiang, L.; Song, Y. L. Appl. Phys. Lett. 2010, 97, 233107.  

[17] Bai, C. L. Chin. Sci. Bull. 2009, 54, 1941. (白春礼, 科学通报, 2009, 54, 1941.)  

[18] Zhou, H. H.; Song, Y. L. Adv. Mater. Res. 2011, 174, 447.

[19] Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. Science 2000, 290, 2123.  

[20] Wang, J. Z.; Zheng, Z. H.; Li, H. W.; Huck, W. T. S.; Sirringhaus, H. Nat. Mater. 2004, 3, 171.  

[21] Lee, K. H.; Kim S. M.; Jeong, H.; Jung, G. Y. Soft Matter 2012, 8, 465.  

[22] Hendriks, C. E.; Smith, P. J.; Perelaer, J.; Van den Berg, A. M. J.; Schubert, U. S. Adv. Funct. Mater. 2008, 18, 1031.  

[23] Fisslthaler, E.; Blumel, A.; Landfester, K.; Scherf, U.; List, E. J. W. Soft Matter 2008, 4, 2448.  

[24] Park, J. U.; Hardy, M.; Kang, S. J.; Barton, K.; Adair, K.; Mukhopadhyay, D. K.; Lee, C. Y.; Strano, M. S.; Alleyne, A. G.; Georgiadis, J. G.; Ferreira, P. M.; Rogers, J. A. Nat. Mater. 2007, 6, 782.  

[25] Park, J. U.; Lee, S.; Unarunotai, S.; Sun, Y. G.; Dunham, S.; Song, T.; Ferreira, P. M.; Alleyene, A. G.; Paik, U.; Rogers, J. A. Nano Lett. 2010, 10, 584.  

[26] Loh, O.; Lam, R.; Chen, M.; Moldovan, N.; Huang, H. J.; Ho, D.; Espinosa, H. D. Small 2009, 5, 1667.  

[27] Lovsky, Y.; Lewis, A.; Sukenik, C.; Grushka, E. Anal. Bioanal. Chem. 2010, 396, 133.

[28] Ferraro, P.; Coppola, S.; Grilli, S.; Paturzo, M.; Vespini, V. Nat. Nanotechnol. 2010, 5, 429.  

[29] Ganan-Calvo, A. M.; Gonzalez-Prieto, R.; Riesco-Chueca, P.; Herrada, M. A.; Flores-Mosquera, M. Nat. Phys. 2007, 3, 737.

[30] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Nature 1997, 389, 827.  

[31] Deegan, R. D. Phys. Rev. E 2000, 61, 475.  

[32] Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Phys. Rev. E 2000, 62, 756.  

[33] Hu, H.; Larson, R. G. J. Phys. Chem. B 2006, 110, 7090.  

[34] Shen, X.; Ho, C. M.; Wong, T. S. J. Phys. Chem. B 2010, 114, 5269.  

[35] Yunker, P. J.; Still, T.; Lohr, M. A.; Yodh, A. G. Nature 2011, 476, 308.  

[36] Hodges, C. S.; Ding, Y.; Biggs, S. J. Colloid Interface Sci. 2010, 352, 99.  

[37] Still, T.; Yunker, P. J.; Yodh, A. G. Langmuir 2012, 28, 4984.  

[38] Bigioni, T. P.; Lin, X. M.; Nguyen, T. T.; Corwin, E. I.; Witten, T. A.; Jaeger, H. M. Nat. Mater. 2006, 5, 265.  

[39] Jung, J. Y.; Kim, Y. M.; Yoo, J. Y. Anal. Chem. 2009, 81, 8256.  

[40] Bhardwaj, R.; Fang, X. H.; Somasundaran, P.; Attinger, D. Langmuir 2010, 26, 7833.  

[41] Soltman, D.; Subramanian, V. Langmuir 2008, 24, 2224.  

[42] Harris, D. J.; Hu, H.; Conrad, J. C.; Lewis, J. A. Phys. Rev. Lett. 2007, 98, 148301.  

[43] Keseroglu, K.; Culha, M. J. Colloid Interface Sci. 2011, 360, 8.

[44] Park, J.; Moon, J. Langmuir 2006, 22, 3506.  

[45] Kim, D.; Jeong, S.; Park, B. K.; Moon, J. Appl. Phys. Lett. 2006, 89, 264101.  

[46] Denneulin, A.; Bras, J.; Carcone, F.; Neuman, C.; Blayo, A. Carbon 2011, 49, 2603.  

[47] Tekin, E.; de Gans, B. J.; Schubert, U. S. J. Mater. Chem. 2004, 14, 2627.  

[48] de Gans, B. J.; Schubert, U. S. Langmuir 2004, 20, 7789.  

[49] Ristenpart, W. D.; Kim, P. G.; Domingues, C.; Wan, J.; Stone, H. A. Phys. Rev. Lett. 2007, 99, 234502.Eral, H. B.; Augustine, D. M.; Duits, M. H. G.; Mugele, F. Soft Matter 2011, 7, 4954.  

Outlines

/