Article

Diatomite-Assisted Synthesis of Ordered Mesoporous Carbon and Its Application in Fuel Cells

  • Liang Ying ,
  • Yu Han ,
  • Huang Qingming ,
  • Zhang Xinqi ,
  • Yu Jianchang
Expand
  • College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108

Received date: 2012-06-29

  Online published: 2012-08-21

Supported by

Project supported by the Fujian Province Natural Science Fund (No. 2008J0146).

Abstract

Ordered mesoporous carbon has the promising development and potential in catalysis, because of its large amount of uniform pore size and high surface area. In this paper, ordered mesoporous carbon has been successfully synthesized via evaporation-induced self-assembly (EISA) method, using triblock copolymer Pluronic F127 as a soft template, resol as a carbon precursor and diatomaceous earth as the transient scaffolds. Diatomite is a kind of special biomaterial with 3D precision of tens of nanometers and of low price. Diatomite shells not only maintain the intact structure of the ordered mesoporous carbon, but also increase its aperture diameter and surface area to a certain degree, during the carbonization between 600℃ to 800℃. When the samples were calcined in nitrogen, the features of diatomite could effectively reduce shrinkage ratio of sample structure, keeping the precursor fluid firmly adsorbed on the surface of diatom shells. The resulting materials were characterized by X-ray diffraction, transmission electron microscopy and N2 adsorption-desorption, etc. The results showed all the samples had highly ordered mesoporous structure. Under the support of diatomite, both of the specific surface area (717~773 m2·g-1) and pore sizes (3.9~11.3 nm) of the mesoporous carbon have become much larger, which could be controlled by adjusting the ratio of diatomite to resol. The influence of the diatomite on the structure of the mesoporous carbon was discussed in the paper. Furthermore, we used the as-prepared ordered mesoporous carbon to load Pt nanoparticles. The Pt/carbon catalysts were prepared by microwave-assisted heating process with ethylene glycol as reductant. The electrocatalytic activity of carbon supported Pt nanoparticles was verified by cyclic voltammetry in CH3OH solution. We found the carbon materials with much larger specific surface areas had higher electrocatalytic activity. When the ratio of diatomite to resol was 0.5, the specific surface area of the sample was the largest, and the corresponding Pt/carbon showed the highest peak current of methanol oxidation.

Cite this article

Liang Ying , Yu Han , Huang Qingming , Zhang Xinqi , Yu Jianchang . Diatomite-Assisted Synthesis of Ordered Mesoporous Carbon and Its Application in Fuel Cells[J]. Acta Chimica Sinica, 2012 , 70(18) : 1939 -1944 . DOI: 10.6023/A12060362

References

[1] Tang, S. H.; Sun, G. Q.; Qi, J.; Sun, S. G.; Guo, J. S.; Xin, Q.; Haarberg, G. M. Chin. J. Catal. 2010, 31, 12. (唐水花, 孙公权, 齐静, 孙世国, 郭军松, 辛勤, Geir Martin Haarberg, 催化学报, 2010, 31, 12.)

[2] Joo, S. H.; Choi, S. J.; Oh, I.; Kwak, J.; Liu, Z.; Terasaki, O.; Ryoo, R. Nature 2001, 412, 169.   

[3] Chai, G. S.; Yoon, S. B.; Yu, J. S.; Choi, J. H.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 7074.

[4] Wu, W.; Cao, J. M.; Chen, Y.; Lu, T.-H. Chin. J. Catal. 2007, 28, 17. (吴伟, 曹洁明, 陈煜, 陆天虹, 催化学报, 2007, 28, 17.)

[5] Xu, Q. J.; Li, J. G.; Li, Q. X. Acta Phys-Chim. Sin. 2011, 27, 1881. (徐群杰, 李金光, 李巧霞, 物理化学学报, 2011, 27, 1881.)

[6] Cui, X.; Shi, J.; Zhang, L.; Ruan, M.; Gao, J. Carbon 2009, 47, 186.   

[7] Ryoo, R.; Joo, S. H.; Jun, S. J. Phys. Chem. B 1999, 103, 7743.

[8] Kruk, M.; Jaroniec, M.; Ryoo, R.; Joo, S. H. J. Phys. Chem. B 2000, 104, 7960.

[9] Lee, J.; Yoon, S.; Oh, S. M.; Shin, C. H.; Hyeon, T. Adv. Mater. 2000, 12, 359.

[10] Zhou, H.; Fan, T.; Zhang, D. ChemSusChem 2011, 4, 1344.   

[11] Losic, D.; Mitchell, J. G.; Voelcker, N. H. Adv. Mater. 2009, 21, 2947.   

[12] Liu, D.; Yuan, P.; Tan, D.; Liu, H.; Fan, M.; Yuan, A.; Zhu, J.; He, H. Langmuir 2010, 26, 18624.   

[13] Holmes, S. M.; Graniel-Garcia, B. E.; Foran, P.; Hill, P.; Roberts, E.; Sakakini, B. H.; Newton, J. M. Chem. Commun. 2006, 2662.   

[14] Tang, J.; He, J. P.; Wang, T.; Guo, Y. X.; Xue, H. R. Acta Chim. Sinica 2011, 69, 1751. (汤静, 何建平, 王涛, 郭云霞, 薛海荣, 化学学报, 2011, 69, 1751.)

[15] Zhou, J. H.; He, J. P.; Ji, Y. J.; Dang, W. J.; Liu, X. L.; Zhao, G. W.; Zhang, C. X.; Zhao, J. S.; Fu, Q. B.; Hu, H. P. Electrochim. Acta 2007, 52, 4691.   

[16] Liu, H. J.; Wang, X. M.; Cui, W. J.; Dou, Y. Q.; Zhao, D. Y.; Xia, Y. Y. J. Mater. Chem. 2010, 20, 4223.

[17] Gaddis, C. S.; Sandhage, K. H. J. Mater. Res. 2004, 19, 2541.

[18] Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Yang, H.; Li, Z.; Yu, C.; Tu, B.; Zhao, D. Angew. Chem. 2005, 117, 7215.   

[19] Huang, Y.; Cai, H.; Feng, D.; Gu, D.; Deng, Y.; Tu, B.; Wang, H.; Webley, P. A.; Zhao, D. Chem. Commun. 2008, 2641.   

[20] Zheng, S. L.; Wang, L. J.; Shu, F.; Chen, J. T. J. Chin. Ceram. Soc. 2007, 34, 1382. (郑水林, 王利剑, 舒锋, 陈俊涛, 硅酸盐学报, 2007, 34, 1382.)

[21] Jiang, Y. Z.; Jia, S. Y. Non-Ferr. Min. Metall. 2011, 27, 31. (姜玉芝, 贾嵩阳, 有色矿冶, 2011, 27, 31.)

[22] Chai, G. S.; Shin, I. S.; Yu, J. S. Adv. Mater. 2004, 16, 2057.   

[23] Pérez-Cabero, M.; Puchol, V.; Beltrán, D.; Amorós, P. Carbon 2008, 46, 297.   

[24] Wang, Y.; Liu, Z.; Han, B.; Huang, Y.; Yang, G. Langmuir 2005, 21, 10846.   

[25] Kwon, H. B.; Lee, C. W.; Jun, B. S.; Yun, J.; Weon, S. Y.; Koopman, B. Resour. Conservat. Recycl. 2004, 41, 75.   

[26] Meng, Y.; Gu, D.; Zhang, F.; Shi, Y.; Cheng, L.; Feng, D.; Wu, Z.; Chen, Z.; Wan, Y.; Stein, A. Chem. Mater. 2006, 18, 4447.

Outlines

/