Fabrication of Ag/Au/Pt Composite Catalysts and Their Electrocatalytic Oxidation for Formic Acid
Received date: 2012-03-19
Online published: 2012-09-11
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51073114, 20933007) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
Ag/Au/Pt composite catalyst has been fabricated by chemical and electrochemical methods. The catalyst is fabricated by the electrodeposition of 100 nm Ag nanoparticle, then Au is deposited by chemical reduction, and Pt is electrodeposited finally, the quantity of Au and Pt is reduced. The samples have been characterized by scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDX) and X-ray diffraction (XRD) techniques. In addition, the electrocatalytic performance of composite electrode materials is measured by cyclic voltammetry (CV) towards formic acid oxidation. The results demonstrate that the as-prepared Ag/Au/Pt composite catalyst with low Pt loading (0.71 μg/cm2) shows much higher catalytic activity than that of the same amount of pure Pt catalyst towards formic acid electrooxidation, and the current density of direct oxidation for formic acid reaches 4541.42 mA/mg. On the other hand, the content of Pt has a significant influence on formic acid oxidation path. It is found that formic acid electrooxidation on the Ag/Au/Pt composite catalyst mainly follows the direct oxidation path only when the atomic ratio of Pt∶Au is less than 1∶10. The enhanced performance is mainly due to the increase of electrochemical active surface area (EASA) through CVs in H2SO4 solution. Moreover, the Ag/Au/Pt composite catalyst exhibits greater poisoning tolerance than that of pure Pt during formic acid electrooxidation, shown in the results of chronoamperometre (CA) measurement. The stability of composite catalyst is evaluated via recording the CV scans of 100 cycles of electrodes towards formic acid oxidation. At the 100th cycle, the current density of Ag/Au/Pt electrode just decreases 2.29%, which is far lower compared with the other electrodes. The CO stripping voltammogram in acid medium is recorded as well. The results show clearly that the CO stripping peak position of composite catalyst shifts negatively compared with that of the pure Pt catalyst in the mass. When the atomic ratio of Pt∶Au is 1∶6.0, the composite catalyst presents lowest peak potential for CO electrooxidation.
Key words: composite catalyst; formic acid; electrocatalysis; direct oxidation; CO stripping
Zhang Qiang , Yao Zhangquan , Zhou Rong , Du Yukou , Yang Ping . Fabrication of Ag/Au/Pt Composite Catalysts and Their Electrocatalytic Oxidation for Formic Acid[J]. Acta Chimica Sinica, 2012 , 70(20) : 2149 -2154 . DOI: 10.6023/A12030017
[1] Wen, Z.-H.; Liu, J.; Li, J.-H. Adv. Mater. 2008, 20, 743.
[2] Li, Y.-M.; Tang, L.-H.; Li, J.-H. Electrochem. Commun. 2009, 11, 846.
[3] Wen, Z.-H.; Wang, Q.; Li, J.-H. Adv. Funct. Mater. 2008, 18, 959.
[4] Yu, X.; Pickup, P. G. J. Power Sources 2008, 182, 124.
[5] Rhee, Y. W.; Ha, S. Y.; Masel, R. I. J. Power Sources 2003, 117, 35.
[6] Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 44, 1.
[7] Wasmus, S; Kuver, A. J. Electroanal. Chem. 1999, 461, 14.
[8] Zhou, K.; Chen, M.; Wang, Z.-B. Chinese Battery Industry 2009, 14, 345. (周锴, 陈锰, 王振波, 电池工业, 2009, 14, 345.)
[9] Gasteiger, H. A.; Markovic, N.; Ross, P. N.; Cairns, J. J. Electrochem. Soc. 1994, 141, 1795.
[10] Arico, A. S.; Creti, P.; Kim, H.; Mantegna, R.; Giordano, N.; Antonucci, V. J. Electrochem. Soc. 1996, 143, 3950.
[11] Abdel, R. M. A.; Khalil, M. W.; Hassan, H. B. J. Appl. Electrochem. 2000, 30, 1151.
[12] Choi, J. H.; Jeong, K. J.; Dong, Y.; Han, J.; Lim, T. H.; Lee, J. S.; Sung ,Y. E. J. Power Sources 2006, 163, 71.
[13] Yu, Y.; Hu, Y.; Liu, X.; Deng, W.; Wang, X. Electrochim. Acta 2009, 54, 3092.
[14] Zhang, H.-M.; Jiang, F.-X.; Zhou, R.; Du, Y.-K.; Yang, P. Int. J. Hydrogen Energy 2011, 36, 15052.
[15] Zhou, R.; Zhang, H.-M.; Du, Y.-K.; Yang, P. Acta Chim. Sinica 2011, 69, 1533. (周蓉, 张红梅, 杜玉扣, 杨平, 化学学报, 2011, 69, 1533.)
[16] Antolini, E.; Cardellini, F. J. Alloys Compd. 2001, 315, 118.
[17] Zhang, H.-M.; Zhou, W.-Q.; Du, Y.-K.; Yang, P.; Wang, C.-Y. Electrochem. Commun. 2010, 12, 882.
[18] Zhao, D.; Xu, B.-Q. Phys. Chem. Chem. Phys. 2006, 8, 5106.
[19] Parsons, R.; VanderNoot, T. J. Electroanal. Chem. 1998, 257, 9.
[20] Weber, M.; Wang, J.-T.; Wasmus, S.; Savinell, R. F. J. Electrochem. Soc. 1996, 143, 158.
[21] Capon, A.; Parsons, R. J. Electroanal. Chem. 1973, 45, 205.
[22] Mrozek, M. F.; Luo, H.; Weaver, M. J. Langmuir 2000, 16, 8463.
[23] Markovic, N. M.; Gasteiger, H. A.; Ross, P. N.; Jiang, X.; Villegas, I.; Weaver, M. J. Electrochim. Acta 1995, 40, 91.
[24] Rice, C.; Ha, S.; Masel, R. I.; Waszczuk, P.; Wieckowski, A.; Barnard, T. J. Power Sources 2002, 111, 83.
[25] Chen, G.-Q.; Li, Y.-H.; Wang, D.; Zheng, L.;You, G.-R. J. Power Sources 2011, 196, 8323.
[26] Sun, S.-G.; Clavilier, J. J. Electroanal. Chem. 1988, 240, 147.
[27] Capon, A.; Parsons, R. J. Electroanal Chem. 1973, 45, 205.
[28] Zhou, X.-C.; Liu, C.-P.; Liao, J.-H.; Lu, T.-H. J. Power Sources 2008, 179, 481.
[29] Arenz, M.; Stamenkovic, V.; Schmidt, T. J.; Wandelt, K.; Ross, P. N.; Markovic, N. M. Phys. Chem. Chem. Phys. 2003, 5, 4242.
[30] Park, I. S.; Lee, K. S.; Choi, J. H.; Park, H. Y.; Sung, Y. E. J. Phys. Chem. 2007, 111, 19126.
[31] Kristian, N.; Yan, Y.; Wang, X. Chem. Commun. 2008, (5), 353.
[32] Wang, S.-Y.; Kristian, N.; Jiang, S.-P.; Wang, X. Electrochem. Commun. 2008, 10, 961.
[33] Zhao, M.-C.; Rice, C.; Masel, R.-I.; Waszczuk, P.; Wieckowski, A. J. Electrochem. Soc. 2004, 151, 131.
[34] Wang, Y.-H.; Zhao, D.; Xu, B.-Q. Chin. J. Catal. 2008, 29, 297.
[35] Obradovic, M. D.; Rogan, J. R.; Babic, B. M.; Tripkocic, A. V.; Gautam, A. R. S.; Radmilovic, V. R. J. Power Sources 2012, 197, 72.
[36] Du, B.-C.; Tong, Y.-Y. J. Phys. Chem. B 2005, 109, 17775.Zhou, W.-Q.; Zhai, C.-Y.; Du, Y.-K.; Xu, J.-K.; Yang, P. Int. J. Hydrogen Energy 2009, 34, 9316.
/
| 〈 |
|
〉 |