Article

Flocculation Kinetics of TiO2-enzyme Microfloccules

  • Wang Fen ,
  • Wu Min ,
  • Qin Yantao ,
  • Miao Chuncun ,
  • Zhou Shaohong ,
  • Ni Henmei ,
  • Sun Yueming
Expand
  • School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189

Received date: 2012-03-25

  Online published: 2012-09-11

Supported by

Project supported by the National Natural Science Foundation of China (No. 51073035), and Educational Commission of Jiangsu Province (No. JHB2011-2).

Abstract

TiO2-enzyme microfloccules were prepared by using titanium dioxide nanoparticles as immobilizing carriers, three kinds of polyacrylamide (nonionic, cationic and anionic polyacrylamide) as flocculants and papain as a model of enzyme. The effects of pH values, dosage and types of polyacrylamide (PAM) on the flocculation and sedimentation behaviour of TiO2-enzyme microfloccules were investigated. The SEM, EDS and particle size analyzer were used to characterize the morphology of TiO2-enzyme microfloccules. The results showed that an effective flocculation was formed among TiO2, papain and different types of PAM flocculant by hydrogen bonding interactions, electrostatic attractions, adsorption bridging action, etc. It was noted that the settling rate of TiO2-enzyme microfloccules, turbidity of the supernatant, floc size and compactness of resulting floccules were highly dependent on the PAM dosage. For three kinds of PAM, similar trends of flocculation kinetics were observed, a general increase in settling rates were relevant to decrease in turbidity. Attributed to high settling rates, strong flocculation with big size and stable floc occurred with the function of optimum PAM concentrations. But the optimum dosages were different. When the concentration was in the range of 75 mg稬-1 to 175 mg稬-1, nonionic PAM (nPAM) displayed the best flocculant performance in all kinds of PAM with a rapid settling rate and large floc size. Moreover, under excessive dosage condition, breakup of floc then occurred. Flocculation kinetics of TiO2-enzyme microfloccules also could be effectively controlled by changing the pH value of reaction system. Compared nPAM with cationic PAM (cPAM), the microfloccules by using nPAM displayed a high stability and compactness in a wide range of pH values. The settling rate and floc size by using cPAM showed a strong dependence on pH values. It indicated that the immobilized enzyme size could be regulated by the PAM dosage and pH value according to the enzyme structure and properties. Such porous and flexible microstructure was expected to provide the free space as much as possible for the access of substrate molecules to enzyme.

Cite this article

Wang Fen , Wu Min , Qin Yantao , Miao Chuncun , Zhou Shaohong , Ni Henmei , Sun Yueming . Flocculation Kinetics of TiO2-enzyme Microfloccules[J]. Acta Chimica Sinica, 2012 , 70(21) : 2226 -2231 . DOI: 10.6023/A12030054

References

[1] Liao, H.-D.; Yuan, L.; Tong, C.-Y.; Zhu, Y.-H.; Li, D.; Liu, X.-M. Chem. J. Chin. Univ. 2008, 29(8), 1564. (廖红东, 袁丽, 童春义, 朱咏华, 李杜, 刘选明, 高等学校化学学报, 2008, 29(8), 1564.)
[2] Hermann, B. G.; Patel, M. Appl. Biochem. Biotechnol. 2007, 136, 361.
[3] Wu, M.; He, Q.; Shao, Q. F.; Zuo, Y. G.; Wang, F.; Ni, H. M. ACS Appl. Mater. Interfaces 2011, 3, 3300.
[4] Jiang, Y. J.; Gao, Q. M. J. Am. Chem. Soc. 2006, 128, 716.
[5] Zong, J.; Chen, Y.-W.; Zhu, S.-M.; Wang, A.-M.; Shen, S.-B.; Ouyang, P.-K. Chin. J. Chem. Eng. 2006, 57(8), 1776. (宗璟, 陈英文, 祝社民, 王安明, 沈树宝, 欧阳平凯, 化工学报, 2006, 57(8), 1776.)
[6] Chen, S. H.; Yen, Y. H.; Wang, C. L.; Wang, S. L. Enzyme Microb. Technol. 2003, 33, 643.
[7] Kim, J.; Grate, J. W. Nano Lett. 2003, 3, 1219.
[8] Vertegel, A.; Siegel, R.; Dordick, J. Langmuir 2004, 20, 6800.
[9] Wang, Z.-J.; Li, X.; Wang, C.-C.; Tang, Y.; Zhang, Y.-H. Chem. J. Chin. Univ. 2011, 32, 753. (王周俊, 李翔, 王琛琛, 唐颐, 张亚红, 高等学校化学学报, 2011, 32, 753.)
[10] Yan, M.; Ge, J.; Liu, Z.; Ouyang, P. K. J. Am. Chem. Soc. 2006, 128, 11008.
[11] Kim, J. B.; Grate, J. W.; Wang, P. Trends Biotechnol. 2009, 26(11), 639.
[12] Wang, P. Curr. Opin. Biotechnol. 2006, 17, 574.
[13] Hu, R.-Q.; Yu, J.-B.; Song, F.-B.; Xia, C.-T.; Li, Q.-Z. Acta Chim. Sinica 2000, 58, 1211. (胡仁其, 于家波, 宋富兵, 夏春镗, 李全芝, 化学学报, 2000, 58, 1211.)
[14] Liu, W. F.; Zhang, S. P.; Wang, P. J. Biotechnol. 2009, 139, 102.
[15] Jia, H. F.; Zhu, G. Y.; Wang, P. Biotechnol. Bioeng. 2003, 84, 406.
[16] Wu, M.; He, Q.; Zuo, Y.-G.; Wang, F.; Sun, Y.-M. Acta Chim. Sinica 2011, 69, 1475. (吴敏, 何琴, 左勇刚, 王芬, 孙岳明, 化学学报, 2011, 69, 1475.)
[17] Lu, C.-X.; Du, Z.-W.; Li, H.-R. Acta Chim. Sinica 2009, 67(3), 238. (卢翠香, 杜竹玮, 李浩然, 化学学报, 2009, 67(3), 238.)
[18] Xu, X. J. The Principle of Chemical Flocculant, Science Press, Beijing, 2005, pp. 74~76.
[19] Nasser, M. S.; James, A. E. Sep. Purif. Technol. 2006, 52, 241.
[20] Solberg, D.; Wagberg, L. Colloids Surf. A 2003, 219, 161.
[21] Taylor, M. L.; Morris, G. E.; Self, P. G.; Smart, R. S. C. J. Colloid Interface Sci. 2002, 250, 28.
[22] Qiu, Y.-L.; Chen, H.-L.; Wang, X.-Z.; Xu, N.-P. J. Chem. Eng. Chin. Univ. 2005, 19, 129. (丘永樑, 陈洪龄, 汪效祖, 徐南平, 高校化学工程学报, 2005, 19, 129.)
[23] Sahoo, B.; Sahu, S. K.; Bhattacharya, D.; Dhara, D.; Pramanik, P. Colloids Surf. B 2013, 101, 280.
[24] Chu, R. H.; Yan, J. C.; Lian, S. Y.; Wang, Y. H.; Yan, F. C.; Chen, D. W. Solid State Commun. 2004, 130, 789.
Outlines

/