Sol-hydrothermal Preparation of N-P-TiO2 Nano-particles for Photocatalytic Degradation of 4-Chlorophenol under Sunlight Irradiation
Received date: 2012-06-25
Online published: 2012-09-24
Supported by
Technological Innovation Team Construction in Universities of Heilongjiang Province (No. 2011TD010).
Mesoporous N-P-codoped anatase-TiO2 nano-sheets were successfully synthesized by a sol-hydrothermal method which utilized urea and phosphorous acid as dopants, and glacial acetic acid as inhibiting agent. Their photoactivities were evaluated by the photocatalytic degradation of 4-chlorophenol (4-CP) in aqueous solution under simulated sunlight irradiation. In combination with XRD, TEM, BET, XPS, DRS, PL and zeta potential characterization, the effect mechanisms of N and P doping on the photoactivities of TiO2 were discussed. The results revealed that the N-P-codoped TiO2 exhibited higher photocatalytic activity for 4-CP degradation than the undoped, N-doped or P-doped TiO2. The visible light response of the N-P-codoped sample may be attributed to narrowing of the band gap resulted from hybridization by the 2p orbits of N atom, 3p orbits of P atom and the 2p orbits of O atom, respectively. The N-P-codoping can further improve the surface texture properties of TiO2, and increase the surface hydroxyl, and inhibit the recombination of photogenerated electrons and holes, and enhance the dispersive capacity in water due to the increase of the surface acidity, which imply that the N-P-codoping produces synergetic effects, therefore resulting in the enhanced photoactivity of N-P-codoped TiO2.
Key words: nano-TiO2; N-P-codoping; sol-hydrothermal; visible light response; synergetic effect
Jiang Hongquan , Wang Qiaofeng , Li Jingshen , Wang Qingyuan , Li Zhenyu . Sol-hydrothermal Preparation of N-P-TiO2 Nano-particles for Photocatalytic Degradation of 4-Chlorophenol under Sunlight Irradiation[J]. Acta Chimica Sinica, 2012 , 70(20) : 2173 -2178 . DOI: 10.6023/A12060341
[1] Kais, E.; Olfa, H.; Najwa, M.; Ayman, M.; Mohamed, K. J. Environ. Sci. 2012, 24(3), 479.
[2] Sylwia, M.; Kamila, B.; Magdalena, J.; Antoni, W. M. J. Hazard. Mater. 2012, 203~204, 128.
[3] Wang, C. Y.; Jiang, H .Q.; Li, J. S.; Lu, Z. Y.; Yan, P. P. J. Donghua Univ. (Eng. Ed.) 2010, 27, 385.
[4] Asahi, R.; Morikawa, T.; Ohwaki, T.; Taga, Y. Science 2001, 293, 269.
[5] Thind, S. S.; Wu, G. S.; Chen, A. C. Appl. Catal. B. Environ. 2012, 111~112, 38.
[6] Wang, S. H.; Zhou, S. Q. J. Hazard. Mater. 2011, 185, 77.
[7] Lv, Y. Y.; Yu, L. S.; Huang, H. Y. Liu, H. L.; Feng, Y. Y. J. Alloys Compd. 2009, 488, 314.
[8] Zheng, R. Y.; Guo Y.; Jin, C.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. J. Mol. Catal. A: Chem. 2010, 319, 46.
[9] Lin, L.; Zheng, R. Y.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. Appl. Catal. B. Environ. 2007, 76, 196.
[10] Han, T.; Fan, T. X.; Chow, S. K.; Zhang, D. Bioresour. Technol. 2010, 101, 6829.
[11] Kim, J. W.; Choi, W. Y. Appl. Catal. B. Environ. 2011, 106, 39.
[12] Xu, L.; Tang, C. Q.; Qian J.; Huang, Z. B. Appl. Surf. Sci. 2010, 256, 2668.
[13] Qi, L. M.; Wang, Y. M.; Ma, J. M. J. Mater. Sci. Lett. 2002, 21, 1301.
[14] Jin, C.; Zheng, R. Y.; Guo, Y.; Xie, J. L.; Zhu, Y. X.; Xie, Y. C. J. Mol. Catal. A: Chem. 2009, 313, 44.
[15] Peng, F.; Cai, L.; Yu, H.; Wang, H.; Yang, J. J. Solid State Chem. 2008, 181, 130.
[16] Xiao, Q.; Ouyang, L. L.; Gao, L.; Jiang, W. J. Mater. Chem. Phys. 2010, 124, 1210.
[17] Sahu, M.; Suttiponparnit, K.; Suvachittanont, S.; Charinpanikul, T.; Biswas, P. Chem. Eng. Sci. 2011, 66, 3482.
/
〈 |
|
〉 |