Communications

A Rapid and Efficient Access to Polysubstituted Imidazoles via Iodine-Catalyzed Tandem Oxidative Cyclization

  • Zhang Baiqun ,
  • Wan Changfeng ,
  • Wang Qiang ,
  • Zhang Shuai ,
  • Zha Zhenggen ,
  • Wang Zhiyong
Expand
  • Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry and Department of Chemistry, University of Science and Technology of China, Hefei 230026

Received date: 2012-09-11

  Online published: 2012-10-29

Supported by

Project supported by the National Natural Science Foundation of China (Nos. J1030412, 20932002, 20972144, 21172205 and 21272222) and the Chinese Ministry of Science and Technology (No. 2010CB912103).

Abstract

Imidazoles represent one of the most important heterocycles which are known to exhibit a wide range of biological and medical activity. Existing methodologies for the synthesis of imidazoles are limited to the generality and accessibility of substrates, and the harsh reaction conditions. The development of milder and more practical protocols should be still desirable and necessary. Here we report a new method for the synthesis of polysubstituted imidazoles. A series of imidazoles was obtained directly from 2-phenylacetaldehyde or acetophenone derivatives and benzylamine derivatives via a metal-free-catalyzed tandem oxidative cyclization. The reaction was performed under mild conditions with iodine as a catalyst and TBHP as an oxidant. The effect of catalyst loading, oxidants, solvents and temperature on this transformation was investigated. The optimal reaction conditions were as follows: 0.3 equiv. of iodine as the catalyst, TBHP as the oxidant, acetonitrile as the solvent and the reaction being carried out at 70℃. Electron-withdrawing group of acetophenone derivatives and benzylamine derivatives benefit the oxidative reaction. Compared with traditional methods, this reaction was conducted under milder conditions with facile starting materials.

Cite this article

Zhang Baiqun , Wan Changfeng , Wang Qiang , Zhang Shuai , Zha Zhenggen , Wang Zhiyong . A Rapid and Efficient Access to Polysubstituted Imidazoles via Iodine-Catalyzed Tandem Oxidative Cyclization[J]. Acta Chimica Sinica, 2012 , 70(23) : 2408 -2411 . DOI: 10.6023/A12090651

References

[1] (a) Rizzi, J. P.; Nagel, A. A.; Rosen, T.; Mclean, S.; Seeger, T. J. Med. Chem. 1990, 33, 2721;
(b) Sarshar, S.; Zhang, C.; Moran, E. J.; Krane, S.; Rodarte, J. C.; Benbatoul, K. D.; Dixon, R.; Mjalli, A. M. M. Bioorg. Med. Chem. 2000, 10, 2599.
[2] (a) Atwell, G. A.; Fan, J.-Y.; Tan, K.; Denny, W. A. J. Med. Chem. 1998, 41, 4744;
(b) Carunu, D. J.; Duncia, J. V.; Johnson, A. L.; Chiu, A. T.; Price, W. A.; Wong, P. C.; Timmermans, P. J. Med. Chem. 1990, 33, 1330;
(c) Messina, F.; Botta, M.; Corelli, F.; Schneider, M. P.; Fazio, F. J. Org. Chem. 1999, 64, 3767;
(d) Khanna, I. K.; Weier, R. M.; Yu, Y.; Xu, X. D.; Koszyk, F. J.; Collins, P. W.; Koboldt, C. M.; Veenhuizen, A. W.; Perkins, W. E.; Casler, J. J.; Masferrer, J. L.; Zhang, Y. Y.; Gregory, S. A.; Seibert, K.; Isakson, P. C. J. Med. Chem. 1997, 40, 1634.
[3] (a) Garrison, J. C.; Youngs, W. J. Chem. Rev. 2005, 105, 3978;
(b) Braband, H.; Kueckmann, T.; Theresa, I.; Abram, U. J. Organomet. Chem. 2005, 690, 5421;
(c) Scott, N. M.; Nolan, S. P. Eur. J. Inorg. Chem. 2005, 1815;
(d) Enders, D.; Niemeier, O.; Henseler, A. Chem. Rev. 2007, 107, 5606;
(e) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand, G. Chem. Rev. 2000, 100, 39;
(f) Arnold, P. L.; Liddle, S. T. Chem. Commun. 2006, 3959.
[4] (a) Dupont, J.; Souza, R. F. d.; Suarez, P. A. Z. Chem. Rev. 2002, 102, 3667;
(b) Nara, S. J.; Naik, P. U.; Harjani, J. R.; Salunkhe, M. M. Indian J. Chem. 2006, 45, 2257;
(c) Chowdhury, S.; Mohan, R. S.; Scott, J. L. Tetrahedron 2007, 63, 2363.
[5] (a) Kamijo, S.; Yamamoto, Y. Chem.-Asian J. 2007, 2, 568;
(b) Delest, B.; Nshimyumukiza, P.; Fasbender, O.; Tinant, B.; Brynaert, J. M.; Darro, F.; Robiette, R. J. Org. Chem. 2008, 73, 6816;
(c) Kison, C.; Opatz, T. Chem.-Eur. J. 2009, 15, 843;
(d) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972;
(e) Kanazawa, C.; Kamijo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2006, 128, 10662;
(f) Giles, R. L.; Sullivan, J. D.; Steiner, A. M.; Looper, R. E. Angew. Chem., Int. Ed. 2009, 48, 3116;
(g) Zhong, Y.-L.; Lee, J.; Reamer, R. A.; Askin, D. Org. Lett. 2004, 6, 929;
(h) Giles, R. L.; Nkansah, R. A.; Looper, R. E. J. Org. Chem. 2010, 75, 261.
[6] Bredereck, H.; Theilig, G. Chem. Ber. 1953, 86, 88.
[7] (a) Salvatori, M. D. R. S.; Abou-Jneid, R.; Ghoulami, S.; Martin, M.-T.; Zaparucha, A.; Al-Mourabit, A. J. Org. Chem. 2005, 70, 8208;
(b) Gwiazda, M.; Reissig, H. U. Synlett 2006, 1683;
(c) Zhong, Y.-L.; Lee, J.; Reamer, R. A.; Askin, D. Org. Lett. 2004, 6, 929;
(d) Sisko, J.; Kassick, A. J.; Mellinger, M.; Filan, J. J.; Allen, A.; Olsen, M. A. J. Org. Chem. 2000, 65, 1516.
[8] (a) Collman, J. P.; Zhong, M.; Zhang, C.; Costanzo, S. J. Org. Chem. 2001, 66, 7892;
(b) Altman, R. A.; Buchwald, S. L. Org. Lett. 2006, 8, 2779;
(c) Cristau, H. J.; Cellier, P. P.; Spindler, J. F.; Taillefer, M. Chem.-Eur. J. 2004, 10, 5607;
(d) Liu, L.; Frohn, M.; Xi, N.; Dominguez, C.; Hungate, R.; Reider, P. J. J. Org. Chem. 2005, 70, 10135;
(e) Lv, X.; Wang, Z.; Bao, W. Tetrahedron 2006, 62, 4756;
(f) Collman, J. P.; Zhong, M. Org. Lett. 2000, 2, 1233;
(g) Lan, J.-B.; Chen, L.; Yu, X.-Q.; You, J.-S.; Xie, R.-G. Chem. Commun. 2004, 188;
(h) Kantam, M. L.; Venkanna, G. T.; Sridhar, C.; Sreedhar, B.; Choudary, B. M. J. Org. Chem. 2006, 71, 9522.
[9] (a) Sharma, S. D.; Hazarika, P.; Konwar, D. Tetrahedron Lett. 2008, 49, 2216;
(b) Kidwai, M.; Mothsra, P. Tetrahedron Lett. 2006, 47, 5029;
(c) Wolkenberg, S. E.; Wisnoski, D. D.; Leister, W. H.; Wang, Y.; Zhao, Z.-J.; Lindsley, C. W. Org. Lett. 2004, 6, 1453;
(d) Usyatinsky, A. Y.; Khmelnitsky, Y. L. Tetrahedron Lett. 2000, 41, 5031.
[10] (a) Li, Y.-Z.; Li, B.-J.; Lu, X.-Y.; Lin, S.; Shi, Z.-J. Angew. Chem., Int. Ed. 2009, 48, 3817;
(b) Borduas, N.; Powell, D. A. J. Org. Chem. 2008, 73, 7822;
(c) Wang, L.; Fu, H.; Jiang, Y.-Y.; Zhao, Y.-F. Chem.-Eur. J. 2008, 14, 10722;
(d) Boldron, C.; Gamez, P.; Tooke, D. M.; Spek, A. L.; Reedijk, J. Angew. Chem., Int. Ed. 2005, 44, 3585;
(e) Jiang, H.; Huang, H.; Cao, H.; Qi, C. Org. Lett. 2010, 12, 5561.
[11] Li, C.-J. Acc. Chem. Res. 2009, 42, 335.
[12] (a) Yan, Y.; Wang, Z. Chem. Commun. 2011, 47, 9513;
(b) Wang, Q.; Wan, C.; Gu, Y.; Zhang, J.; Gao, L.; Wang, Z. Green Chem. 2011, 13, 578;
(c) Zhang, J.-T.; Yu, C.-M.; Wang, S.-J.; Wan, C.-F.; Wang, Z.-Y. Chem. Commun. 2010, 46, 5244;
(d) Zhang, J.; Zhu, D.; Yu, C.; Wan, C.; Wang, Z. Org. Lett. 2010, 12, 2841;
(e) Wan, C.; Zhang, J.; Wang, S.; Fan, J.; Wang, Z. Org. Lett. 2010, 12, 2338;
(f) Wan, C.; Gao, L.; Wang, Q.; Zhang, J.; Wang, Z. Org. Lett. 2010, 12, 3902.
[13] CCDC 900085 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac. uk/data_request/.
[14] (a) Li, Q.; Fan, A.; Lu, Z.; Cui, Y.; Lin, W.; Jia, Y. Org. Lett. 2010, 12, 4066;
(b) Wan, X.; Xing, D.; Fang, Z.; Li, B.; Zhao, F.; Zhang, K.; Yang, L.; Shi, Z. J. Am. Chem. Soc. 2006, 128, 12046.
[15] (a) Wei, W.; Shao, Y.; Hu, H.; Zhang, F.; Zhang, C.; Xu, Y.; Wan, X. J. Org. Chem. 2012, 77, 7157;
(b) Jiang, H.; Huang, H.; Cao, H.; Qi, C. Org. Lett. 2010, 12, 5561;
(c) Lamani, M.; Prabhu, K. R. Chem.-Eur. J. 2012, 18, 14638;
(d) Zhang, X.; Wang, L. Green Chem. 2012, 14, 2141. Yan, Y.; Zhang, Y.; Feng, C.; Zha, Z.; Wang, Z. Angew. Chem., Int. Ed. 2012, 51, 8079.
Outlines

/