Communications

Palladium-Catalyzed Oxidative Aminofluorination of Styrenes

  • Zhu Haitao ,
  • Liu Guosheng
Expand
  • State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032

Received date: 2012-10-29

  Online published: 2012-11-12

Supported by

Project supported by the 973 Program of China (No. 2009CB825300), the National Natural Science Foundation of China (Nos. 20972175, 20923005), and the Science and Technology Commission of the Shanghai Municipality (No. 11JC1415000).

Abstract

A novel palladium-catalyzed intermolecular aminofluorination of styrenes has been developed, using silver fluoride as the fluorine source, palladium diacetate as metal catalyst, and acetonitrile as solvent at room temperature. As regard to the mechanism, we proposed that the anti-Markovnikov aminopalladation was involved in the construction of C—N bond. This selectivity of nucleophilic palladation of styrenes is different from that reported before. In order to verify our proposed mechanism, we conducted the competition experiments using styrenes containing different functional groups. The results are consistent with our analysis. We belive that the C—F bond is formed after the Pd(II)-C is oxidized to Pd(IV)-C. Namely, the high oxidative state palladium is involved in catalytic cycle. In all, this transformation represents a novel strategy to synthesize a variety of vicinal fluoroamine derivatives.

Cite this article

Zhu Haitao , Liu Guosheng . Palladium-Catalyzed Oxidative Aminofluorination of Styrenes[J]. Acta Chimica Sinica, 2012 , 70(23) : 2404 -2407 . DOI: 10.6023/A12100835

References

[1] (a) Welch, J. T.; Eswarakrishman, S. Fluorine in Bioorganic Chemistry, Wiley, New York, 1991;
(b) Banks, R. E.; Smart, B. E.; Tatlow, J. C. Organofluorine Chemistry, Principles and Commercial Application, Plenum Press, New York, 1994.
[2] For reviews on fluorination of organic compounds, see (a) Nyffeler, P. T.; Duron, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C. H. Angew. Chem. Int. Ed. 2005, 44, 192;
(b) Shimizu, M.; Hiyama, T. Angew. Chem. Int. Ed. 2005, 44, 214;
(c) Pihko, P. M. Angew. Chem. Int. Ed. 2006, 45, 544;
(d) Appayee, C.; Brenner-Moyer, S. E. Org. Lett. 2010, 12, 3357.
[3] (a) Smoekh, L.; Shanzer, A. J. Am. Chem. Soc. 1982, 104, 5836;
(b) Philips, A. J.; Uto, Y.; Wipf, P.; Reno, M. J.; Williams, D. R. Org. Lett. 2000, 2, 1165;
(c) Li, Y.; Ni, C.; Liu, J.; Zhang, L.; Zheng, J.; Zhu, L.; Hu, J. Org. Lett. 2006, 8, 1693;
(d) Anbarasan, P.; Neumann, H.; Beller, M. Angew. Chem. Int. Ed. 2010, 49, 2219;
(e) Wilson, D. A. US 4339070, 1983 [Chem. Abstr. 1983, 99, 138839].
[4] For some reviews, see: (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675;
(b) Brunet, J. J.; Togni, A.; Grützmacher, D. H. Catalytic Heterofunctionalization, Wiley-VCH, New York, 2001, pp. 91~141;
(c) Eds.: Hong, S.; Marks, T. J. Acc. Chem. Res. 2004, 37, 673;
(d) Hartwig, J. F. Pure Appl. Chem. 2004, 76, 507.
[5] For reviews that describe oxidative amination reaction, see: (a) Beccalli, E. M.; Broggini, G.; Marttinelli, M.; Sottocornola, S. Chem. Rev. 2007, 107, 5318;
(b) Stahl, S. S. Angew. Chem. Int. Ed. 2004, 43, 3400;
(c) Kotov, V.; Scarborough, C. C.; Stahl, S. S. Inorg. Chem. 2007, 46, 1910;
(d) McDonald, R. I.; Liu, G. S.; Stahl, S. S. Chem. Rev. 2011, 111, 2981.
[6] For some examples of intermolecular oxidative amination of alkenes, see: (a) Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2003, 125, 12996;
(b) Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 2868;
(c) Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888.
[7] For recent reviews on transition metal-catalyzed C-F bond formation, see: (a) Brown, J. M.; Gouvernuer, V. Angew. Chem. Int. Ed. 2009, 48, 8610;
(b) Grushin, V. V. Acc. Chem. Res. 2010, 43, 160;
(c) Furuya, T.; Klein, J. E. M. N.; Ritter, T. Synthesis 2010, 1804. For recent examples see:
(d) Hull, K. L.; Anani, W. Q.; Sanford, M. S. J. Am. Chem. Soc. 2006, 128, 7134;
(e) Wang, X.; Mei, T. S.; Yu, J. Q. J. Am. Chem. Soc. 2009, 131, 7520;
(f) Furuya, T.; Kaiser, H. M.; Ritter, T. Angew. Chem., Int. Ed. 2008, 47, 5993;
(g) Watson, D. A.; Su, M.; Teverovskiy, G.; Zhang, Y.; García-Fortanet, J.; Kinzel, T.; Bulchwald, S. L. Science 2009, 325, 1661;
(h) Tang, P.; Furuya, T.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 12150.
[8] Qiu, S.; Xu, T.; Zhou, J.; Guo, Y.; Liu, G. J. Am. Chem. Soc. 2010, 132, 2856.
[9] Wu, T.; Yin, G.; Liu, G. J. Am. Chem. Soc. 2009, 131, 16354.
[10] The effect of silver is unclear at this moment. It is possible that AgF is effective for the generation of C-PdF complex via the interaction of Ag and Pd. For details, see: (a) Heckenroth, M.; Neels, A.; Garnier, M. G.; Aebi, P.; Ehlers, A. W.; Albrecht, M. Chem. Eur. J. 2009, 15, 9375;
(b) Heckenroth, M.; Kluser, E.; Neels, A.; Albrecht, M. Angew. Chem., Int. Ed. 2007, 46, 6293.
[11] (a) Gatti, G.; López, J. A.; Mealli, C.; Musco, A. J. Organomet. Chem. 1994, 483, 77;
(b) Rix, F. C.; Brookhart, M.; White, P. S. J. Am. Chem. Soc. 1996, 118, 2436;
(c) LaPoite, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906;
(d) Lin, Y. S.; Yamamoto, A. Organometallics 1998, 17, 3466;
(e) Nozaki, K.; Komaki, H.; Kawashima, Y.; Hiyama, T.; Matsubara, T. J. Am. Chem. Soc. 2001, 123, 534;
(f) Hii, K. K.; Claridge, T. D. W.; Giernoth, R.; Brown, J. M. Adv. Synth. Catal. 2004, 346, 983.
Outlines

/