Article

Preparation of One-dimensional Axial Organic-inorganic Heterojunction and Its Schottky Behavior

  • Zhu Weigang ,
  • Zhang Dezhong ,
  • Fu Hongbing
Expand
  • a Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190;
    b Graduate University of the Chinese Academy of Sciences, Beijing 100049

Received date: 2012-08-24

  Online published: 2012-11-14

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 90301010, 20873163, 20803085, 20925309), the Chinese Academy of Sciences ("100 Talents" program), and the National Research Fund for Fundamental Key Project 973 (No. 2011CB808402).

Abstract

Preparation of one-dimensional organic-inorganic hybrid materials has always been a difficult problem, innovative performance and broad application prospects make it a hotspot in recent years. In this work, the organic conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) and inorganic metal silver (Ag) segmented nanowires were successfully synthesized through a electrochemical deposition method in the porous anodic alumina oxide (AAO) templates. In a typical experiment, firstly a thin layer of platinum was evaporated on one side of AAO templates served as anode in a two electrode electrochemical cell, while platinum was served as cathode. PEDOT nanowires were deposited into the AAO templates in 0.1 mol/L 3,4-ethylenedioxythiophene (EDOT) and 0.02 mol/L 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM]PF6) acetonitrile solution by applying a voltage of 3 V for 20 min. Then the AAO templates contained PEDOT nanowires as a cathode was placed in another Ag+ containing solution, Ag blocks were deposited into the AAO templates at a current of 1 mA for 20 min. So the PEDOT-Ag segmented nanowires embedded AAO templates were acquired. Finally, aligned segmented PEDOT-Ag nanowires were obtained by dissolving the templates with 6 mol/L NaOH for 6 h and repeatedly rinsed with distilled water until the pH of the solution was 7. The morphology and structure of a single PEDOT-Ag nanowire were characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The result showed that the sliver nanowire was grown epitaxially on the amorphous PEDOT nanowire. Using the top contact electrode method, we studied the I-V characteristic curves of single PEDOT nanowire and single PEDOT-Ag heterojunction nanowire. The results revealed that the single heterojunction nanowire showed a Schottky diode behavior, the forward turn-on voltage was 0.3 V, and the reverse breakdown voltage was 1.5 V. A Schottky junction formed at PEDOT/Ag interface due to the difference in work functions of two materials. To our surprise, the forward current of the Schottky diode reached microamp. Moreover, we believed that this novel nanoscale Schottky device with low turn-on voltage and huge forward current would be applied in the field of electronics, optics and catalysis.

Cite this article

Zhu Weigang , Zhang Dezhong , Fu Hongbing . Preparation of One-dimensional Axial Organic-inorganic Heterojunction and Its Schottky Behavior[J]. Acta Chimica Sinica, 2012 , 70(22) : 2337 -2341 . DOI: 10.6023/A12080591

References

[1] Xu, W. H.; Zhang, Y. X.; Guo, Z.; Chen, X.; Liu, J. H.; Huang, X. J.; Yu, S. H. Small 2012, 8, 53.
[2] Lin, H. W.; Liu, H. B.; Qian, X. M.; Lai, S. W.; Li, Y. J.; Chen, N.; Ouyang, C. B.; Che, C. M.; Li, Y. L. Inorg. Chem. 2011, 50, 7749.
[3] Liu, R.; Lee, S. B. J. Am. Chem. Soc. 2008, 130, 2942.
[4] Hernández, R. M.; Richter, L.; Semancik, S.; Stranick, S.; Mallouk, T. E. Chem. Mater. 2004, 16, 3431.
[5] Briseno, A. L.; Holcombe, T. W.; Boukai, A. I.; Garnett, E. C.; Shelton, S. W.; Fréchet, J. M. J.; Yang, P. Nano Lett. 2010, 10, 334.
[6] Park, S.; Lim, J.-H.; Chung, S.-W.; Mirkin, C. A. Science 2004, 303, 348.
[7] Kempa, T. J.; Tian, B. Z.; Kim, D. R.; Hu, J. S.; Zheng, X. L.; Lieber, C. M. Nano Lett. 2008, 8, 3456.
[8] Guo, Y. B.; Tang, Q. X.; Liu, H. B.; Zhang, Y. J.; Li, Y. L.; Hu, W. P.; Wang, S.; Zhu, D. B. J. Am. Chem. Soc. 2008, 130, 9198.
[9] Chen, X. D.; Li, S. Z.; Xue, C.; Banholzer, M. J.; Schatz, G. C.; Mirkin, C. A. ACS Nano 2009, 3, 87.
[10] Kirchmeyer, S.; Reuter, K. J. Mater. Chem. 2005, 15, 2077.
[11] “Bert” Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv. Mater. 2000, 12, 481.
[12] “Bert” Groenendaal, L.; Zotti, G.; Aubert, P.-H.; Waybright, S. M.; Reynolds, J. R. Adv. Mater. 2003, 15, 855.
[13] Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Angew. Chem., Int. Ed. 2008, 47, 2.
[14] Cao, X. W.; Qian, Q. Q.; Deng, W. Q.; Zhang, T. T. Acta Chim. Sinica 2010, 68, 107. (曹晓卫, 钱庆庆, 邓卫芹, 张婷婷, 化学学报, 2010, 68, 107.)
[15] Fan, J. F.; Zhao, C. X.; Fan, L. Z. Acta Chim. Sinica 2012, 70, 229. (范建凤, 赵晨醒, 范楼珍, 化学学报, 2012, 70, 229.)
[16] Huang, S. W.; Li, J. S.; Liang, A. H.; Jiang, Z. L. Acta Chim. Sinica 2011, 69, 183. (黄世稳, 李纪顺, 梁爱惠, 蒋治良, 化学学报, 2011, 69, 183.)
[17] Jung, J.; Seo, D.; Park, G.; Ryu, S.; Song, H. J. Phys. Chem. C 2010, 114, 12529.
[18] Zhang, D. H.; Li, G. D.; Li, J. X.; Chen, J. S. Chem. Commun. 2008, 3414.
[19] Aasmundtveit, K. E.; Samuelsen, E. J.; Pettersson, L. A. A.; Inganäs, O.; Johansson, T.; Feidenhans, R. Synth. Met. 1999, 101, 561.
[20] Niu, L.; Kvarnström, C.; Fröberg, K.; Ivaska, A. Synth. Met. 2001, 122, 425.
[21] Watanabe, A.; Murakami, S.; Mori, K.; Kashiwaba, Y. Macromolecules 1989, 22, 4231.
Outlines

/