Article

Characteristic and Adsorption Mechanism of Hyperbranched Collagen Fiber toward Cr(VI)

  • Wang Xuechuan ,
  • Zhang Feifei ,
  • Qiang Taotao
Expand
  • Key Laboratory of Chemistry and Technology for Light Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China

Received date: 2012-08-31

  Online published: 2012-11-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 21076120), Science and Technology Project of Shaanxi Province Education Department (No. 12JK0594), Science and Technology Project of Xianyang City (No. 2011K10-11), Science and Technology Project of Weiyang District of Xi’an (No. 201118) and the Graduate Innovation Fund of Shaanxi University of Science and Technology.

Abstract

Hyperbranched polymer modified collagen fiber was used as a novel absorbent to remove hexavalent chromium from simulated chrome solution. Various factors influencing the uptake of Cr(VI), namely, quantity of absorbent, pH, the concentration of the simulated chrome solution and the duration of treatment had been studied. The experimental result indicated that the modified collagen fiber was very effective for removing Cr(VI) from simulated chrome solution. The removal of Cr(VI) increased with the decrease of solution pH values. The maximum rate of removal was attained at pH 3.0. The increase of absorbent dosage would raise the removal efficiency, but it would simultaneously reduce the adsorption capacity. Moreover, the removal rate of Cr(VI) was found to decrease with the increasing of initial concentration of Cr(VI). At pH 3.0, the temperature of 30 ℃, 4.0 g·L-1 modified collagen fiber, the rate of removal could reach 99.57%. Whereas, the Cr(VI) uptake capacity increased with the increase of Cr(VI) initial concentration until reaching saturation, which was found to be 38.94 mg·g-1 at pH 3.0, 30 ℃ and the initial concentration of 400 mg·L-1. Several desorption solutions were used to analyze the desorption process while the 0.18 mol·L-1 NaOH solution was the best. Furthermore, X-ray photoelectron spectroscopy (XPS) as well as scanning electron microscope and energy dispersive spectrometer (SEM-EDS) analysis were employed to characterize hyperbranched polyamide amino modified collagen fiber (CF-HBPN), and further to elucidate the adsorption mechanism involved in the process. XPS analysis revealed that the Cr(VI) combined on the surface of modified collagen fiber and the protonation amino groups were the functional groups in the adsorption process because of the electrostatic power. SEM analysis revealed that the surface of modified collagen fiber was rough and it had three-dimensional network structures. EDS analysis indicated that the adsorption process included ion exchange.

Cite this article

Wang Xuechuan , Zhang Feifei , Qiang Taotao . Characteristic and Adsorption Mechanism of Hyperbranched Collagen Fiber toward Cr(VI)[J]. Acta Chimica Sinica, 2012 , 70(24) : 2536 -2542 . DOI: 10.6023/A12080609

References

[1] Hsu, L. C.; Wang, S. L.; Lin, Y. C.; Wang, M. K.; Chiang, P. N.; Liu, J. C.; Kuan, W. H.; Chen, C. C.; Tzou, Y. M. Environ. Sci. Technol. 2010, 44, 6202.

[2] Vikrant, S.; Pant, K. K. Bioresour. Technol. 2006, 97, 15.

[3] Narin, I.; Kars, A.; Soylak, M. J. Hazard. Mater. 2008, 150, 453.

[4] Rajesh, N.; Rohit, K. J.; Pinky, H. J. Hazard. Mater. 2008, 150, 723.

[5] Wu, X. W.; Ma, H. W.; Zhang, Y. R. Appl. Clay Sci. 2010, 48, 538.

[6] Parinda, S.; Akira, N.; Paitip, T.; Yoshinari, B.; Woranan, N. J. Hazard. Mater. 2009, 161, 1103.

[7] Zhao, Y. G.; Shen, H. Y.; Li, Q.; Xia, Q. H. Acta Chim. Sinica 2009, 67(13), 1509. (赵永纲, 沈昊宇, 李勍, 夏清华, 化学学报, 2009, 67(13), 1509.)

[8] Li, K. B.; Wang, Q. Q.; Dang, Y.; Wei, H.; Luo, Q.; Zhao, F. Acta Chim. Sinica 2012, 70(7), 929. (李克斌, 王勤勤, 党艳, 魏红, 罗倩, 赵锋, 化学学报, 2012, 70(7), 929.)

[9] Fathima, N. N.; Aravindhan, R.; Rao, J. R.; Nair, B. U. Environ. Sci. Technol. 2005, 39, 2804.

[10] Cheng, H. M.; Wang, R.; Wang, Y. M.; Chen, M.; Liao, L. L.; Li, Z.; Duan, W. W.; Li, Z. Q. J. Sichuan Univ. (Eng. Sci. Ed. ) 2007, 39(3), 78. (程海明, 王睿, 王英梅, 陈敏, 廖隆里, 李舟, 段悟吾, 李志强, 四川大学学报(工程科学版), 2007, 39(3), 78.)

[11] Wang, Z. Y.; Liu, J. D.; Li, Z. Z.; Zhu, R. F. Gold 2010, 31(2), 48. (王振玉, 刘家弟, 李宗站, 朱仁峰, 黄金, 2010, 31(2), 48.)

[12] Fan, R. M.; Zhang, B. G.; Zhang, H. X.; Fan, J. H.; Wang, Q.; Bai, Z. H. Chin. J. Environ. Eng. 2007, 1(8), 44. (范瑞梅, 张保国, 张洪勋, 范家恒, 王谦, 白志辉, 环境工程学报, 2007, 1(8), 44.)

[13] Lim, S. F.; Zheng, Y. M.; Zou, S. W.; Chen, J. P. Enivron. Sci. Technol. 2008, 42, 2551.

[14] Miao, Z. C.; Wang, L.; Li, M. J.; Hao, M. D.; Zhang, C. W.; Li, Z. J. Fine Chem. 2012, 29(2), 113. (苗宗成, 王蕾, 李铭杰, 郝明德, 张超武, 李仲瑾, 精细化工, 2012, 29(2), 113.)

[15] Maksin, D. D.; Nastasovic, A. B.; Milutinovic-Nikolic, A. D.; Surucic, L. T.; Sandic, Z. P.; Hercigonja, R. V.; Onjia, A. E. J. Hazard. Mater. 2012, 209-210, 99.

[16] Fu, M. Q.; Tang, L. M.; Zhang, P.; Shen, D. Y. J. Sichuan Union Univ. (Eng. Sci. Ed.) 1997, 1(5), 8. (符迈群, 唐兰模, 张萍, 沈敦瑜, 四川联合大学学报(工程科学版), 1997, 1(5), 8.)

[17] Zhang, F.; Chen, Y. Y.; Zhang, D. S.; Hua, Y. R.; Zhao, B. Polym. Mater. Sci. Eng. 2009, 25(8), 141. (张峰, 陈宇岳, 张德锁, 华琰蓉, 赵兵, 高分子材料科学与工程, 2009, 25(8), 141.)

[18] State Environmental Protection Main Office, Water and Exhausted Water Monitoring Analysis Method, 4th ed., China Environmental Science Press, Beijing, 2002. (国家环境保护总局, 水和废水监测分析方法, 第4版, 中国环境科学出版社, 北京, 2002.)

[19] Bo, F.; Guo, J. W.; Wang, Q.; Liao, Y.; Liu, H. Chem. Ind. Eng. Prog. 2011, 30(S1), 870. (卜芳, 郭建维, 王琴, 廖洋, 刘鸿, 化工进展, 2011, 30(S1), 870.)
Outlines

/