Article

Synthesis, Structures and Single-Molecule Magnet Behaviour of Octanuclear and Decanuclear Dysprosium Clusters Based on [Dy44-O)] Tetrahedral Subunits

  • Guo Penghu ,
  • Liao Xiaofen ,
  • Leng Jidong ,
  • Tong Mingliang
Expand
  • Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education/State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Received date: 2012-11-05

  Online published: 2012-12-06

Supported by

Project supported by the “973 Project” (2012CB821704) and the National Natural Science Foundation of China (Nos. 91122032, 90922009 and 21121061).

Abstract

Two novel [Dy44-O)] based dysprosium(III) clusters, namely, [Dy8(bpt)84-O)2(μ-OMe)81,1,3,3-N3)(μ1,3-N3)- (N3)2]·11H2O·9MeOH (1) and [Dy10(bpt)64-O)43-OMe)4(μ-OMe)8(μ-OAc)2(OAc)2]·40H2O (2) (Hbpt=3,5-bis(pyridin- 2-yl)-1,2,4-trizole), are synthesized successfully. To obtain complex 1, a mixture of DyCl3 (0.1 mmol), 2,2'-Hbpt (0.1 mmol) and NaN3 (0.15 mmol) was sealed in a 25 mL vessel and then heated at 160℃ in methanol condition (8 mL) for 72 h. The reaction of Dy(OAc)3 (0.17 mmol) and 2,2'-Hbpt (0.1 mmol) under the same condition as complex 1 yielded complex 2. Single-crystal X-ray diffraction reveals that complex 1 consists of a pair of [Dy44-O)] tetrahedral units bridged by two azido groups in μ1,1,3,3 and μ1,3 modes as well as two bpt ligands, while complex 2 possesses four edge-sharing [Dy44-O)] tetrahedral units. Magnetic susceptibility of polycrystalline samples were carried out using a SQUID magnetometer in the temperature range 2~300 K at 500 Oe dc field. The χMT value are 107.8 cm3·K·mol-1 for complex 1 and 133.6 cm3·K·mol-1 for complex 2 at 300 K, which are close to the expected values. The maximum values of magnetization at 1.8 K are 40.81 Nb and 51.62 Nb for 1 and 2, slightly smaller than the expected saturation values. For further investigation of the dynamic behaviour, ac susceptibility measurements were undertaken under zero-dc field between 1~1500 Hz, they both show temperature dependence and have maximum values in the χMvs v plots above 1.8 K, indicating the presence of slow relaxation of the magnetization. After linear fitting the first four points of ln(τ/s) vs 1/T plot, we get energy barrier Ueff=9.83(9) K, pre-exponential factor τ0=1.63(2)×10-5 s for 1, and Ueff=12.05(2) K, τ0=6.75(8)×10-7 s for 2 respectively. The bridging mode of azido in complex 1 is novel and complex 2 holds the record for highest nuclearity among the reported pure lanthanide single-molecule magnets (SMMs) under zero dc field.

Cite this article

Guo Penghu , Liao Xiaofen , Leng Jidong , Tong Mingliang . Synthesis, Structures and Single-Molecule Magnet Behaviour of Octanuclear and Decanuclear Dysprosium Clusters Based on [Dy44-O)] Tetrahedral Subunits[J]. Acta Chimica Sinica, 2013 , 71(02) : 173 -178 . DOI: 10.6023/A12110865

References

[1] Leuenberger, M. N.; Loss, D. Nature 2001, 410, 789.

[2] (a) Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M. A. Nature 1993, 365, 141;

(b) Sessoli, R.; Tsai, H. L.; Schake, A. R.; Wang, S.; Vincent, J. B.; Folting, K.; Gatteschi, D.; Christou, G.; Hendrickson, D. N. J. Am. Chem. Soc. 1993, 115, 1804.

[3] Mondal, K. C.; Sundt, A.; Lan, Y.; Kostakis, G. E.; Waldmann, O.; Ungur, L.; Chibotaru, L. F.; Anson, C. E.; Powell, A. K. Angew. Chem. Int. Ed. 2012, 51, 7550.

[4] (a) Tang, J.; Hewitt, I.; Madhu, N. T.; Chastanet, G.; Wernsdorfer, W.; Anson, C. E.; Benelli, C.; Sessoli, R.; Powell, A. K. Angew. Chem., Int. Ed. 2006, 45, 1729;

(b) Chibotaru, L. F.; Ungur, L.; Soncini, A. Angew. Chem., Int. Ed. 2008, 47, 4126.

[5] (a) Gamer, M. T.; Lan, Y.; Roesky, P. W.; Powell, A. K.; Clérac, R. Inorg. Chem. 2008, 47, 6581;

(b) Blagg, R. J.; Muryn, C. A.; McInnes, E. J. L.; Tuna, F.; Winpenny, R. E. P. Angew. Chem., Int. Ed. 2011, 50, 6530.

[6] Francesca, B.; Carretta, P.; Marta, F.; Giorgio, Z.; Michael, J. G.; Jose, R. G.-M.; Olaf, F.; Susan, B.; Mario, R. J. Am. Chem. Soc. 2009, 131, 4387.

[7] Ishikawa, N.; Ishikawa, M. T.; Koshihara, S.; Kaizu, Y. J. Am. Chem. Soc. 2003, 125, 8694.

[8] Liu, J.-L.; Yuan, K.; Leng, J.-D.; Ungur, L.; Wernsdorfer, W.; Guo, F.-S.; Chibotaru, L.-F.; Tong, M.-L. Inorg. Chem. 2012, 51, 8538.

[9] (a) Ke, H.; Xu, G. F.; Zhao, L.; Tang, J.; Zhang, X. Y.; Zhang, H. J.; Chem. Eur. J. 2009, 15, 10335;

(b) Miao, Y. L.; Liu, J. L.; Leng, J. D.; Lin, Z. J.; Tong, M. L. CrystEngComm 2011, 13, 3345.

[10] (a) Lin, P. H.; Burchell, T. J.; Clérac, R.; Murugesu, M. Angew. Chem., Int. Ed. 2008, 47, 8848;

(b) Xu, G. F.; Wang, Q. L.; Gamez, P.; Ma, Y.; Cléra, R.; Tang, J.; Yan, S. P.; Cheng, P.; Liao, D. Z. Chem. Commun 2010, 46, 1506.

[11] (a) Hewitt, I. J.; Lan, Y.; Anson, C. E.; Luzon, J.; Sessoli, R.; Powell, A. K. Chem. Commun. 2009, 6765;

(b) Guo, F. S.; Liu, J. L.; Leng, J. D.; Meng, Z. S.; Lin, Z. J.; Tong, M. L.; Gao, S.; Ungur, L.; Chibotaru, L. F. Chem. Eur. J. 2011, 17, 2458;

(c) Muhammad, A. U.; Santokh, S. T.; Louise, N. D.; Fatemah, H.; Muralee, M.; Laurence, K. T. Inorg. Chem. 2012, 51, 1028.

[12] (a) Guo, Y. N.; Xu, G. F.; Gamez, P.; Zhao, L.; Lin, S. Y.; Deng, R.; Tang, J.; Zhang, H. J. J. Am. Chem. Soc. 2010, 132, 8538;

(b) Lin, S. Y.; Zhao, L.; Ke, H.; Guo, Y. N.; Tang, J.; Guo, Y.; Dou, J. Dalton Trans. 2012, 41, 3248.

[13] (a) Zheng, Y. Z.; Lan, Y.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2008, 47, 10813;

(b) Lin, P. H.; Burchell, T. J.; Ungur, L.; Chibotaru, L. F.; Wernsdorfer, W.; Murugesu, M. Angew. Chem., Int. Ed. 2009, 48, 9489;

(c) Bi, Y.; Wang, X. T.; Liao, W.; Wang, X.; Deng, R.; Zhang, H.; Gao, S. Inorg. Chem. 2009, 48, 11743;

(d) Abbas, G.; Lan, Y.; Kostakis, G. E.; Wernsdorfer, W.; Anson, C. E.; Powell, A. K. Inorg. Chem. 2010, 49, 8067;

(e) Yan, P. F.; Lin, P. H.; Habib, F.; Aharen, T.; Murugesu, M.; Deng, Z. P.; Li, G. M.; Sun, W. B. Inorg. Chem. 2011, 50, 7059;

(f) Xue, S.; Zhao, L.; Guo, Y. N.; Tang, J. Dalton Trans. 2012, 41, 351;

(g) Guo, F.-S.; Guo, P.-H.; Meng, Z.-S.; Tong, M.-L. Polyhedron 2011, 30, 3079;

(h) Miao, Y.-L.; Liu, J.-L.; Li, J.-Y.; Leng, J.-D.; Ou, Y.-C.; Tong, M.-L. Dalton Trans. 2011, 40, 10229;

(i)
Guo, F.-S.; Liu, J.-L.; Leng, J.-D.; Tong, M.-L.; Gao, S.; Ungur, L.; Chibotaru, L. F. Chem. Eur. J. 2011, 17, 2458;

(j)
Leng, J.-D.; Liu, J.-L.; Zheng, Y.-Z.; Ungur, L.; Chibotaru, L. F.; Guo, F.-S.; Tong, M.-L. Chem. Commun. 2013, 49, 158.

[14] Lin, P. H.; Korokov, I.; Wernsdorfer, W.; Ungur, L.; Chibotaru, L. F.; Murugesu, M. Eur. J. Inorg. Chem. 2011, 1535.

[15] Ke, H.; Gamez, P.; Zhao, L.; Xu, G. F.; Xue, S.; Tang, J. Inorg. Chem. 2010, 49, 7549.

[16] Tian, H.; Wang, M.; Zhao, L.; Guo, Y. N.; Guo, Y.; Tang, J.; Liu, Z. Chem. Eur. J. 2012, 18, 442.

[17] Tian, H.; Zhao, L.; Guo, Y. N.; Guo, Y.; Tang, J.; Liu, Z. Chem. Commun. 2012, 48, 708.

[18] Bao, X.; Leng, J. D.; Meng, Z. S.; Lin, Z. J.; Tong, M. L.; Nihei, M.; Oshio, H. Chem. Eur. J. 2010, 16, 6196.

[19] (a) Guo, P. H.; Liu, J. L.; Zhang, Z. M.; Ungur, L.; Chibotaru, L. F.; Leng, J. D.; Guo, F. S.; Tong, M. L. Inorg. Chem. 2012, 51, 1233;

(b) Zhang, Z.-M.; Guo, F.-S.; Guo, P.-H.; Liu, J.-L.; Tong, M.-L. Sci. China Chem. 2012, 55, 934.

[20] Wang, X. Y.; Wang, Z. M.; Gao, S. Chem. Commun. 2008, 281.

[21] (a) Kahn, O. Molecular Magnetism, VCH Publishers, New York, 1993;

(b) Sutter, J. P.; Kahn, M. L. Magnetism: Molecules to Materials, Vol. 5, Eds.: Miller, J. S.; Drillon, M., Wiley VCH, Weiheim, 2005, p. 161.

[22] (a) Ishikawa, N.; Sugita, M.; Wernsdorfer, W. J. Am. Chem. Soc. 2005, 127, 3650;

(b) AlDamen, M. A.; Clemente-Juan, J. M.; Coronado, E.; Marti-Gastaldo, C.; Gaita-Arino, A. J. Am. Chem. Soc. 2008, 130, 8874;

(c) Jiang, S. D.; Wang, B. W.; Sun, H. L.; Wang, Z. M.; Gao, S. J. Am. Chem. Soc. 2011, 133, 4730;

(d) Bi, Y.; Guo, Y. N.; Zhao, L.; Guo, Y.; Lin, S. Y.; Jiang, S. D.; Tang, J.; Wang, B. W.; Gao, S. Chem. Eur. J. 2011, 17, 12476.

[23] Cole, K. S.; Cole, R. H. J. Chem. Phys. 1941, 9, 341.

[24] Gatteschi, D.; Sessoli, R.; Villain, J. Molecular Nanomagnets, Oxford University Press, New York, 2006, p. 69.

Outlines

/