Article

Influence of Different Solvents on the Property of Methotrexate/Layered Double Hydroxides

  • Zhang Xiaoqing ,
  • Zeng Meigui ,
  • Li Shuping
Expand
  • Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210097, China

Received date: 2012-11-15

  Online published: 2012-12-06

Supported by

Project supported by the National Natural Science Foundation of China (No. 21073093), Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20103207120006) and the Priority Academic Program Development of the Jiangsu Higher Education Institutions of China.

Abstract

Methotrexate (MTX) was intercalated into the layered double hydroxides (LDHs) by the coprecipitation method to form MTX/LDHs nanocompounds, the effect of different solvents, i.e. water, mixture of ethanol and water, mixture of polyethylene glycol-400/4000 (PEG-400/4000) and water, on the properties of MTX/LDHs nanocompounds has been examined carefully. The nanocompounds were then characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), transmission electron/micrograph (TEM), atomic force microscopy (AFM), thermogravimetry/differential scanning calorimetry (TG-DSC) and UV-visible diffuse spectroscopy (UV-vis). XRD and FTIR investigations demonstrated the successful intercalation of MTX anions as a declining monolayer into the interlayer of LDHs and the interlayer spacing changed accordingly with the variation in the kind of solvents. We thought that the addition of ethanol and PEG just changed the growth environment, especially the property of interlayer water in MTX/LDHs compounds and the hypothesis has been proved by the analysis of TG-DSC. There is no intercalation of PEG molecular into the LDHs interlayers from all the characterization. Compared with the product prepared in other solvents, the particles obtained in the mixture of PEG-400 and water exhibited round plates with the best monodispersity and the most regular morphology. The mechanism how PEG-400 molecules influence the formation of MTX/LDHs nanocompounds is described emphatically: non-ionized PEG-400 molecules will form chain-like structures due to the assembly in water, and the growth of nanocompounds is strictly limited in these structures. Due to the inhibition effect of PEG-400, further agglomeration will be forbidden; as a result the monodispersity will be improved. But when the molecular chain of PEG is too long (i.e. PEG-4000), it goes against the growth of nanocompounds on the contrary. The in vitro release experiment has been carried out in phosphate buffer solution at the pH value of 7.4, and the result revealed that the release property of MTX/LDHs can be well described by parabolic diffusion equation, or the release mechanism is mainly belongs to drug diffusion. The work reported here will help to establish a general method for the synthesis of drug/LDH nanocompounds with regular morphology and perfect dispersion properties.

Cite this article

Zhang Xiaoqing , Zeng Meigui , Li Shuping . Influence of Different Solvents on the Property of Methotrexate/Layered Double Hydroxides[J]. Acta Chimica Sinica, 2013 , 71(02) : 246 -254 . DOI: 10.6023/A12110921

References

[1] Rives, V. Layered Double Hydroxides: Present and Future, Nova Science Publishers, New York, 2001, pp. 229~250.

[2] Feng, Y. J.; Williams, G. R.; Leroux, F.; Taviot-Gueho, C.; O’Hare, D. Chem. Mater. 2006, 18, 4312.

[3] Kwak, S. Y.; Jeong, Y. J.; Park, J. S.; Choy, J. H. Solid State Ionics 2002, 151, 229.

[4] Kwak, S. Y.; Kriven, W. M.; Wallig, M. A.; Choy, J. H. Biomaterials 2004, 25, 5995.

[5] Ambrogi, V.; Fardella, G.; Grandolini, G.; Nocchetti, M.; Perioli, L. Int. J. Pharm. 2001, 220, 23.

[6] Tyner, K. M.; Schiffman, S. R.; Giannelis, E. P. J. Controlled Release 2004, 95, 501.

[7] Zheng, H. Medicinal Chemistry, 6th ed., People's Medical Publishing House, Beijing, 2007, pp. 241~242. (郑虎, 药物化学, 第6版, 人民卫生出版社, 北京, 2007, pp. 241~242.)

[8] Oh, J. M.; Park, M.; Kim, S. T.; Jung, J. Y.; Kang, Y. G.; Choy, J. H. J. Phys. Chem. Solids 2006, 67, 1024.

[9] Lu, J.; Liu, Q.-F.; Luo, G.-A.; Wang, Y.-M. Chin. J. Org. Chem. 2009, 29, 1167. (路娟, 刘清飞, 罗国安, 王义明, 有机化学, 2009, 29, 1167.)

[10] Wang, J.-Q.; Li, X.; Li, S.-P.; Zhong, H. Acta Chim. Sinica 2011, 69, 137. (王继芹, 李鑫, 李淑萍, 仲慧, 化学学报, 2011, 69, 137.)

[11] Jin, L.; Liu, Q.; Sun, Z.-Y.; Ni, X.-Y.; Wei, M. Ind. Eng. Chem. Res. 2010, 49, 11176.

[12] Aisawa, S.; Ohnuma, Y.; Hirose, K.; Takahashi, S.; Hirahara, H.; Narita, E. Appl. Clay Sci. 2005, 28, 137.

[13] Aisawa, S.; Takahashi, S.; Ogasawara, W. J. Solid State Chem. 2001, 162, 52.

[14] Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173.

[15] Zhu, W.-X.; Sun, D.-J.; Liu, S.-Y.; Wang, N.; Zhang, J.; Luan, L.-Y. Colloids Surf. A: Physicochem. Eng. Aspects 2007, 301, 106.

[16] Oh, J. M.; Choi, S. J.; Kim, S. T.; Choy, J. H. Bioconjugate Chem. 2006, 17, 1411.

[17] Yao, G.-Y.; Li, Y.-B.; Lu, B.-D.; Wei, Z.-X. Chin. J. Rare Met. 2007, 31, 192. (姚根有, 李延斌, 逯宝娣, 卫芝贤, 稀有金属, 2007, 31, 192.)

[18] Hu, D.-W.; Wang, Y.-M. J. Chin. Ceram. Soc. 2008, 36, 1488. (胡大为, 王燕民, 硅酸盐学报, 2008, 36, 1488.)

[19] Wen, Y.-M.; Lu, Z.-Q. Chem. Res. Appl. 2002, 14, 563. (温燕梅, 卢泽勤, 化学研究与应用, 2002, 14, 563.)

[20] Wang, J.; Peng, Z.-M.; Huang, Y.-J.; Chen, Q.-W. J. Cryst. Growth 2004, 263, 616.

[21] Gilbert, B.; Zhang, H.; Huang, F.; Finnegan, M. P.; Waychunas, G. A.; Banfield, J. F. Geochem. Trans. 2003, 4, 20.

[22] Liu, Z.-P.; Ma, R.-Z.; Osada, M.; Iyi, N.; Ebina, Y.; Takada, K.; Sasaki, T. J. Am. Chem. Soc. 2006, 128, 4872.

[23] Xu, Z.-P.; Stevenson, G. S.; Lu, C. Q.; Lu, G.-Q. J. Phys. Chem. B 2006, 110, 16923.

[24] Yang, Q.-Z.; Sun, D.-J.; Zhang, C.-G.; Wang, X.-J.; Zhao, W.-A. Langmuir 2003, 19, 5570.

[25] Valente, J. S.; Sa?nchez-Cantu?, M.; Lima, E.; Figueras, F. Chem. Mater. 2009, 21, 5809.

[26] Li, C.; Wang, L.-Y.; Evans, D. G.; Duan, X. Ind. Eng. Chem. Res. 2009, 48, 2162.

[27] Choy, J. H.; Jung, J. S.; Oh, J. M.; Park, M.; Jeong, J.; Kang, Y. K.; Han, O. J. Biomaterials 2004, 25, 3059.

[28] Li, Y.-H.; Xu, J.; Zhang, S.-J.; Li, D.-X.; Zheng, B.; Hou, W.-G. Chin. J. Inorg. Chem. 2009, 25, 2124. (李艳红, 徐洁, 张少杰, 李东祥, 郑斌, 侯万国, 无机化学学报, 2009, 25, 2124.)

[29] Kong, X.-G.; Jin, L.; Wei, M.; Duan, X. Appl. Clay Sci. 2010, 49, 324.

[30] Zhang, X.-Q.; Qi, F.-L.; Li, S.-P.; Wei, S.-H.; Zhou, J.-H. Appl. Surf. Sci. 2012, 259, 245.

[31] Wang, Y.-S.; Han, Y.-L.; Li, Y.-X.; Wang, Y.-M.; Li, R.-S. Chem. J. Chin. Univ. 2007, 28, 1092. (王银松, 韩月莲, 李英霞, 王玉玫, 李荣珊, 高等学校化学学报, 2007, 28, 1092.)

Outlines

/