Article

Research on the Phase Transition and Morphological Evolution Behaviors of Titania/Titanate Nanomaterials by Calcination Treatment

  • Zhao Bin ,
  • Lin Lin ,
  • Chen Chao ,
  • Chai Yuchao ,
  • He Dannong
Expand
  • a National Engineering Research Center for Nanotechnology, Shanghai 200241;
    b School of Material Science and Engineering, Shanghai JiaoTong University, Shanghai 200240

Received date: 2012-09-27

  Online published: 2012-12-10

Supported by

Project supported by the Shanghai International Science and Technology Cooperation Project (No. 11520706100), Shanghai Rising-Star Program (B-type) (No. 12QB1402800), National Natural Science Foundation of China (No. 21071098) and International Science and Technology Cooperation Project of China (No. 2011DFA50530).

Abstract

Titania/titanate nanomaterials including rutile, anatase, brookite TiO2 and sodium dititanate and trititanate were obtained by regulating the acid/alkali concentration under hydrothermal treatment. A systematical investigation was established to uncover the phase transition and morphological evolution behaviors of TiO2/titanate nanomaterials by calcining the samples including rutile TiO2 nanorods, anatase TiO2 nanocrystallines, brookite TiO2 nanoflowers, acid washed dititanate H2Ti2O5 nanosheets and trititanate H2Ti3O7 nanowires at 400, 600, 800 or 1000 ℃ for 4 h in air with the heating rate of 2 ℃/min. After heat-treatment, the products were taken out from the oven and cooled down to the room temperature. Rietveld refinements of the powder X-ray diffraction (XRD) pattern were used to generally assess the phase composition of the different samples and their crystallite sizes, and to further investigate the phase transition behavior in company with the synthetic parameters. FESEM, TEM, and HRTEM were used to characterize the morphology evolution and to further elucidate the morphological evolution of the resulting products. The crystalline phase distributed diagram of TiO2/titanate nanostructures dominated by the two experimental parameters indcluding acid/alkali concentration and calcination temperature was presented in the current work based on our experimental results, in which revealed the 5 types of phase transition and morphological evolution behaviors of titania/titanate nanomaterials. 1. Rutile nanorods → rutile nanorod aggregations → rutile micro particles. 2. Anatase nanocrystallines → anatase nanoparticle aggregations → rutile micro particles. 3. Brookite nano- flowers → brookite nanoflower clusters → rutile micro clusters. 4. Dititanate H2Ti2O5 nanosheets →anatase nanoparticle aggregations → rutile micro clusters. 5. Trititanate H2Ti3O7 nanowires → TiO2-B nanowires → anatase nanowire aggregations → rutile micro clusters. The crystal growth and phase transition mechanism was discussed based on the Ostwald’s step rule. Moreover, morphological evolution mechanism was also discussed based on the thermodynamic equilibrium regime and oriented attachment growth model.

Cite this article

Zhao Bin , Lin Lin , Chen Chao , Chai Yuchao , He Dannong . Research on the Phase Transition and Morphological Evolution Behaviors of Titania/Titanate Nanomaterials by Calcination Treatment[J]. Acta Chimica Sinica, 2013 , 71(01) : 93 -101 . DOI: 10.6023/A12090724

References

[1] Guo, W. X.; Xu, C; Wang, X.; Wang, S. H.; Pan, C. F.; Lin, C. J.; Wang, Z. L. J. Am. Chem. Soc. 2012, 134, 4437.

[2] Jiang, D. W.; Zhou, T. S.; Sun, Q.; Yu, Y. Y.; Shi, G. Y.; Jin, L. T. Chin. J. Chem. 2011, 29, 2505.

[3] Zheng, Q.; Li, J. H.; Chen, Q. P.; Bai, J.; Zhou, B. X.; Cai, W. M. Chin. J. Chem. 2011, 29, 2236.

[4] Wan, Z. Q.; Zheng, S. N.; Jia, C. Y.; Yan, W. Acta Chim. Sinica 2009, 67, 403. (万中全, 郑树楠, 贾春阳, 延卫, 化学学报, 2009, 67, 403.)

[5] Su, J. X.; Qu, W.; Ma, L. Y.; Yin, J.; Pan, Q. Acta Chim. Sinica 2008, 66, 2416. (苏继新, 屈文, 马丽媛, 殷晶, 潘齐, 化学学报, 2008, 66, 2416.)

[6] Zhao, W. K.; Zhou, L.; Liu, C.; Hu, L.; Fang, Y. L.; Kiuchi, M. Acta Chim. Sinica 2003, 61, 699. (赵文宽, 周磊, 刘昌, 胡翎, 方佑龄, 木内正人, 化学学报, 2003, 61, 699.)

[7] Luan, X. N.; Guan, D. S.; Wang, Y. J. Phys. Chem. C 2012, 116, 14257.

[8] Zhao, B.; Chen, F.; Gu, X. N.; Zhang, J. L. Chem. Asian J. 2010, 5, 1546.

[9] Wu, H. B.; Lou, X. W.; Hng, H. H. Chem. Eur. J. 2012, 18, 2094.

[10] Yang, D. J.; Zheng, Z. F.; Zhu, H. Y.; Liu, H. W.; Gao, X. P. Adv. Mater. 2008, 20, 2777.

[11] Tsai, C. C.; Teng, H. Chem. Mater. 2006, 18, 367.

[12] Amano, F.; Yasumoto, T.; Shibayama, T.; Uchida, S.; Ohtani, B. Appl. Catal., B 2009, 89, 583.

[13] Shen, W. H.; Nitta, A.; Chen, Z.; Eda, T.; Yoshida, A.; Naito, S. J. Catal. 2011, 280, 161.

[14] Peng, Y. P.; Lo, S. L.; Ou, H. H.; Lai, S. W. J. Hazard. Mater. 2010, 183, 754.

[15] Scotti, R.; Bellobono, I. R.; Canevali, C.; Cannas, C.; Catti, M.; D’Arienzo, M.; Musinu, A.; Polizzi, S.; Sommariva, M.; Testino, A.; Morazzoni, F. Chem. Mater. 2008, 20, 4051.

[16] Li, J. G.; Ishigaki, T.; Sun, X. D. J. Phys. Chem. C 2007, 111, 4969.

[17] Morgan, D. L.; Zhu, H. Y.; Frost, R. L.; Waclawik, E. R. Chem. Mater. 2008, 20, 3800.

[18] Morgan, D. L.; Liu, H. W.; Frost, R. L.; Waclawik, E. R. J. Phys. Chem. C 2010, 114, 101.

[19] Zhao, B.; Chen, F.; Jiao, Y. C.; Zhang, J. L. J. Mater. Chem. 2010, 20, 7990.

[20] Zhao, B.; Chen, F.; Huang, Q. W.; Zhang, J. L. Chem. Commun. 2009, 34, 5115.

[21] Pavasupree, S.; Suzuki, Y.; Yoshikawa, S.; Kawahata, R. J. Solid State Chem. 2005, 178, 3110.

[22] Armstrong, A. R.; Armstrong, G.; Canales, J.; Bruce, P. G. Angew. Chem., Int. Ed. 2004, 43, 2286.

[23] Wu, Y. M.; Zhang, J. L.; Xiao, L.; Chen, F. Appl. Catal., B 2009, 88, 525.

[24] Kochkar, H.; Lakhdhar, N.; Berhault, G.; Bausach, M.; Ghorbel, A. J. Phys. Chem. C 2009, 113, 1672.

[25] Kuang, D. B.; Brillet, J.; Chen, P.; Takata, M.; Uchida, S.; Miura, H.; Sumioka, K.; Zakeeruddin, S. M.; Gräzel, M. ACS Nano 2008, 2, 1113.

[26] Wu, Y. M.; Liu, H. B.; Zhang, J. L.; Chen, F. J. Phys. Chem. C 2009, 113, 14689.

[27] Hummer, D. R.; Kubicki, J. D.; Kent, P. R. C.; Post, J. E.; Heaney, P. J. J. Phys. Chem. C 2009, 113, 4240.

[28] Tsai, C. C.; Teng, H. Langmuir 2008, 24, 3434.

[29] Zhao, B.; Chen, F.; Qu, W. W.; Zhang, J. L. J. Solid State Chem. 2009, 182, 2225.

[30] Xu, H. L.; Wang, W. Z.; Zhu, W.; Zhou, L.; Ruan, M. L. Cryst. Growth Des. 2007, 7, 2720.

[31] Banfield, J. F.; Welch, S. A.; Zhang, H. Z.; Ebert, T. T.; Penn, R. L. Science 2000, 289, 751.

[32] Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127, 7140.

[33] Jiao, Y. C.; Zhao, B.; Chen, F.; Zhang, J. L. CrystEngComm 2011, 13, 4167.

[34] Yan, W. F.; Chen, B.; Mahurin, S. M.; Dai, S.; Overbury, S. H. Chem. Commun. 2004, 17, 1918.

[35] Buonsanti, R.; Grillo, V.; Carlino, E.; Giannini, C.; Kipp, T.; Cingolani, R.; Cozzoli, P. D. J. Am. Chem. Soc. 2008, 130, 11223.

[36] Tomita, K.; Petrykin, V.; Kobayashi, M.; Shiro, M.; Yoshimura, M.; Kakihana, M. Angew. Chem., Int. Ed. 2006, 45, 2378.

[37] Iskandar, F.; Nandiyanto, A. B. D.; Yun, K. M.; Hogan, Jr., C. J.; Okuyama, K.; Biswas, P. Adv. Mater. 2007, 19, 1408.

[38] Finnegan, M. P.; Zhang, H. Z.; Banfield, J. F. J. Phys. Chem. C 2007, 111, 1962.

[39] Ge, X.; Song, S. Y.; Zhang, H. J. CrystEngComm 2012, 14, 7306.

[40] Zhao, B.; Chen, F.; Liu, H. Q.; Zhang, J. L. J. Phys. Chem. Solids 2011, 72, 201.

[41] Santen, R. A. V. J. Phys. Chem. 1984, 88, 5768.

[42] Ostwald, W. Z Phys. Chem. 1897, 22, 289.

[43] Threlfall, T. Org. Process Res. Dev. 2003, 7, 1017.

[44] Mullin, J. W. Crystallization, 4th ed., Butterworth Heinemann, Boston, 2001.

[45] Penn, R. L.; Banfield, J. F. Science 1998, 281, 969.
Outlines

/