Article

Theoretical Study on the Structure and Properties of Graphdiyne

  • Li Huixue ,
  • Wang Xiaofeng ,
  • Li Zhifeng ,
  • Pan Sujuan
Expand
  • Key Laboratory for New Molecule Design and Function of Gansu Education Department, College of Life Science and Chemistry, Tianshui Normal University, Tianshui 741001

Received date: 2012-09-28

  Online published: 2012-12-14

Supported by

Project supported by the Key Laboratory for New Molecule Material Design and Function of Tianshui Normal University and the Scientific Research Projects of Young and Middle-aged in Tianshui Normal University (No. TSA1116), the Key Discipline of Tianshui Normal University, and the Fund of Educational Commission of Gansu Province (No. 1108-03).

Abstract

The graphdiyne, as a new stable carbon allotrope, is expected to be widely applied to nanosciences and devices due to unique structure and properties. In this paper we investigated the structural parameters, Wiberg bond indices, and the aromaticity of graphdiyne at the B3LYP/6-31+G* level. The calculating results indicated all the p-electrons of the carbons were able to form delocalized π-bonds and all the lengths of C—C bonds were to become average. The aromaticity of all the benzene rings was stronger than the scalene hexagon due to more negative the nucleus independent chemical shift (NICS) value. The topological properties of the compound were in good agreement with those discussed in Wiberg Bond Orders. The LUMO bandwidth (0.27 eV) of the title compound was larger than the HOMO bandwidth (0.24 eV), it indicates that the graphdiyne should be n-type material. The calculation of the odd electrons by the broken symmetry method showed that the compound contains 3.6 effectively unpaired electrons and possesses enhanced chemical reactivity.

Cite this article

Li Huixue , Wang Xiaofeng , Li Zhifeng , Pan Sujuan . Theoretical Study on the Structure and Properties of Graphdiyne[J]. Acta Chimica Sinica, 2013 , 71(01) : 75 -80 . DOI: 10.6023/A12090728

References

[1] Kroto, H. W.; Heath, J. R.; Obrien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
[2] Iijima, S. Nature 1991, 354, 56.
[3] Kroto, H.; Allaf, A.; Balm, S. Chem. Rev. 1991, 91, 1213.
[4] Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Science 2004, 306, 666.
[5] Dennler, G.; Scharber, M. C.; Brabec, C. J. Adv. Mater. 2009, 21, 1323.
[6] Thompson, B. C.; Frechet, J. M. J. Angew. Chem., Int. Ed. 2008, 47, 58.
[7] Thilgen, C.; Diederich, F. Chem. Rev. 2006, 106, 5049.
[8] Guldi, D. M.; Illescas, B. M.; Atienza, C. M.; Wielopolskia, M.; Martin, N. Chem. Soc. Rev. 2009, 38, 1587.
[9] Veldman, D.; Ipek, O.; Meskers, S. C. J.; Sweelssen, J.; Koetse, M. M.; Veenstra, S. C.; Kroon, J. M.; van Bavel, S. S.; Loos, J.; Janssen, R. A. J. J. Am. Chem. Soc. 2008, 130, 7721.
[10] Andrews, R.; Jacques, D.; Qian, D. L.; Rantell, T. Acc. Chem. Res. 2002, 35, 1008.
[11] Prato, M.; Kostarelos, K.; Bianco, A. Acc. Chem. Res. 2008, 41, 60.
[12] Kim, S. N.; Rusling, J. F.; Papadimitrakopoulos, F. Adv. Mater. 2007, 19, 3214.
[13] Britz, D. A.; Khlobystov, A. N. Chem. Soc. Rev. 2006, 35, 637.
[14] Stankovich, S.; Dikin, D.; Dommett, G.; Kohlhaas, K.; Zimney, E.; Stach, E.; Piner, R.; Nguyen, S.; Ruoff, R. Nature 2006, 442, 282.
[15] Watcharotone, S.; Dikin, D.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G.; Evmenenko, G.; Wu, S.; Chen, S.; Liu, C. Nano Lett. 2007, 7, 1888.
[16] Blake, P.; Brimicombe, P.; Nair, R.; Booth, T.; Schedin, F.; Ponomarenko, L.; Morozov, S.; Gleeson, H.; Hill, E.; Geim, A. Nano Lett. 2008, 8, 1704.
[17] Barbolina, I.; Novoselov, K.; Morozov, S.; Dubonos, S.; Missous, M.; Volkov, A.; Christian, D.; Grigorieva, I.; Geim, A. Appl. Phys. Lett. 2006, 88, 013901.
[18] Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H.; Van Wees, B. Nature 2007, 448, 571.
[19] Di, C.; Wei, D.; Yu, G.; Liu, Y.; Guo, Y.; Zhu, D. Adv. Mater. 2008, 20, 3289.
[20] Wang, X.; Zhi, L.; Mullen, K. Nano Lett. 2008, 8, 323.
[21] Baughman, R.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687.
[22] Marsden, J. A.; Haley, M. M. J. Org. Chem. 2005, 70, 10213.
[23] Haley, M. M. Pure Appl. Chem. 2008, 80, 519.
[24] Liu, H.; Xu, J.; Li, Y. Acc. Chem. Res. 2010, 43, 1496.
[25] Li, G.; Li, Y.; Liu, H.; Guo, Y.; Li, Y.; Zhua, D. Chem. Commun. 2010, 46, 3256.
[26] Chakarova Käck, S.; Schröder, E.; Lundqvist, B.; Langreth, D. Phys. Rev. Lett. 2006, 96, 146107.
[27] Leenaerts, O.; Partoens, B.; Peeters, F. Phys. Rev. B 2008, 77, 125416.
[28] Heine, T.; Zhechkov, L.; Seifert, G. Phys. Chem. Chem. Phys. 2004, 6, 980.
[29] Schedin, F.; Geim, A.; Morozov, S.; Hill, E.; Blake, P.; Katsnelson, M.; Novoselov, K. Nat. Mater. 2007, 6, 652.
[30] Zhang, Y.; Chen, Y.; Zhou, K.; Liu, C.; Zeng, J.; Zhang, H.; Peng, Y. Nanotechnology 2009, 20, 185504.
[31] Giannozzi, P.; Car, R.; Scoles, G. J. Am. Chem. Soc. 2003, 118, 1003.
[32] Miura, Y.; Kasai, H.; Dino, W.; Nakanishi, H.; Sugimoto, T. J. Appl. Phys. 2003, 93, 3395.
[33] Montoya, A.; Truong, T.; Sarofim, A. J. Phys. Chem. A 2000, 104, 6108.
[34] Jeloaica, L.; Sidis, V. Chem. Phys. Lett. 1999, 300, 157.
[35] Sheka, E. F.; Chernozatonskii, L. A. Int. J. Quantum Chem. 2010, 110, 1938.
[36] Xu, B.; Yin, J.; Xia, Y. D.; Wan, X. G.; Jiang, K.; Liu, Z. G. Appl. Phys. Lett. 2010, 96, 163102.
[37] Luo, G.; Qian, X.; Liu, H.; Qin, R.; Zhou, J.; Li, L.; Gao, Z.; Wang, E.; Mei, W. N.; Lu, J.; Li, Y.; Nagase, S. Phys. Rev. B 2011, 84, 075439.
[38] Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 1998, 58, 11009.
[39] Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 2000, 62, 11146.
[40] Long, M.; Tang, L.; Wang, D.; Li, Y.; Shuai, Z. ACS Nano 2011, 5, 2593.
[41] Wiberg, K. Tetrahedron 1968, 24, 1083.
[42] Liang, X. Q.; Pu, X. M.; Tian, A. M. Acta Chim. Sinica 2010, 68, 1568. (梁晓琴, 蒲雪梅, 田安民, 化学学报, 2010, 68, 1568.)
[43] Li, H. X.; Wang, X. F.; Li, Z. F.; Zhu, Y. C. Acta Phys.-Chim. Sinica 2012, 28, 1094.
[44] Schleyer, P. V.; Maerker, C.; Dransfeld, A.; Jiao, H.; Hommes, N. J. Am. Chem. Soc 1996, 118, 6317.
[45] Schleyer, P. V.; Jiao, H.; Hommes, N.; Malkin, V.; Malkina, O. J. Am. Chem. Soc. 1997, 119, 12669.
[46] Steiner, E.; Fowler, P.; Jenneskens, L. Angew. Chem., Int. Ed. 2001, 40, 362.
[47] Ditchfield, R. Mol. Phys. 1974, 27, 789.
[48] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 03, Revision E.01, Gaussian, Inc., Wallingford, CT, 2004.
[49] Chen, Z. F.; Wannere, C. S.; Corminboeuf, C.; Puchta, R.; Schleyer, P. R. Chem. Rev. 2005, 105, 3842.
[50] Sosa, G. L.; Peruchena, N. M.; Contreras, R. H.; Castro, E. A. THEOCHEM 2002, 577, 219.
[51] Prall, M.; Wittkopp, A.; Schreiner, P. R. J. Phys. Chem. A 2001, 105, 9265.
[52] Sheka, E. F.; Razbirin, B. S.; Nelson, D. K. J. Phys. Chem. A 2011, 115, 3480.
[53] Sheka, E. F. Int. J. Quantum Chem. 2004, 100, 375.
[54] Sheka, E. F. J. Struct. Chem. 2006, 47, 593.
[55] Sheka, E. F. Central Eur. J. Phys. 2004, 2, 300.
[56] Sheka, E. F.; Chernozatonskii, L. J. Phys. Chem. C 2007, 111, 10771.
[57] Sheka, E. F.; Chernozatonskii, L. J. Exp. Theor. Phys. 2010, 110, 121.
[58] Sheka, E. F.; Chernozatonskii, L. A. Int. J. Quantum Chem. 2010, 110, 1466.
[59] Zayets, V. A. CLUSTER-Z1: Quantum-Chemical Software for Calculations in the s,p-Basis, Institute of Surface Chemistry, National Academy of Science of Ukraine, Kiev, 1990.
[60] Perdew, J. P.; Parr, R. G.; Levy, M. B. Phys. Rev. Lett. 1982, 49, 1691.
[61] Cervantes-Salguero, K.; Seminario, J. M. J. Mol. Model. 2012, 18, 4043.
Outlines

/