Preparation of ZnFe2O4/TiO2 Nanotube Array Electrode and Photoelectrocatalysis Degradation of Phenol
Received date: 2012-09-10
Online published: 2012-12-18
Supported by
Project supported by the State Key Laboratory of Precision Measuring Technology and Instruments Foundation.
A well-aligned ZnFe2O4/TiO2 nanotube array electrode with visible-light activity was successfully prepared using a two-step electrochemical process of anodization and a novel cathodic electrodeposition method. Its morphology and chemical composition was characterized by environmental scanning electron microscope, transmission electron microscope and X-ray diffraction. The ZnFe2O4 nanoparticles were highly dispersed inside the TiO2 nanotube but minimized at the tube entrances. The composites displayed a strong photo response in the visible region and low recombination rate of the electron- hole pairs. The synthesized ZnFe2O4/TiO2 nanotube electrode showed much higher photocurrent density in the visible region than pure TiO2 nanotube electrode. In addition, we discussed the influence on the electrode properties of ZnFe2O4/TiO2 nanotube array from mass concentration sedimentary time, cycle times and sedimentary voltage. The optimal experimental condition was 0.05 mol/L Zn(NO3)3+0.1 mol/L Fe(NO3)3, 20 min 5 times and 1 V. The photocatalytic activity of the composite electrode was evaluated in the decomposition of phenol under visible light irradiation. It was found that the degradation rate increased with voltages and an increase in the activity by a factor of 1.5~2 relative to pure TiO2 nanotube was obtained under the optimal conditions. The improved photoelectrocatalytic activity is derived from the synergetic effect between ZnFe2O4 and TiO2, which promoted the migration efficiency of photogenerated carriers at the interface of the composite and enhanced the efficiency of photon harvesting. Under the visible region, the ZnFe2O4/TiO2 nanotube electrode was operated under the same experimental conditions. The results clearly show a good recycle with the degradation rate of 95% even after five repeated experiments. These results demonstrate that the ZnFe2O4/TiO2 nanotube electrode was an ef?cient material in utilizing solar energy for the photodecomposition of pollutants.
Sun Mojie , Hu Quan , Li Jian , Liu Chunguang , Shen Yang . Preparation of ZnFe2O4/TiO2 Nanotube Array Electrode and Photoelectrocatalysis Degradation of Phenol[J]. Acta Chimica Sinica, 2013 , 71(02) : 213 -220 . DOI: 10.6023/A12090639
[1] Wang, H. J.; Wu, X.; Wang, Y. L.; Jiao, Z. B.; Yan, S. W.; Huang, L. H. Chin. J. Catal. 2011, 32, 637. (王后锦, 吴晓婧, 王亚玲, 焦自斌, 颜声威, 黄浪欢, 催化学报, 2011, 32, 637.)
[2] Kafi, A. K. M.; Chen, A. Talanta 2009, 79, 97.
[3] Huang, Y. R.; Zhou, Q. X.; Xie, G. H.; Liu, H. J.; Lin, H. Y. Micro chim. Acta 2011, 172, 109.
[4] Fang, Z.; Zhou, Q. X. Acta Chim. Sinica 2012, 70, 1767. (房治, 周庆祥, 化学学报, 2012, 70, 1767.)
[5] Qu, X.; Tian, M.; Chen, S. A.; Liao, B. Q.; Chen, A. C. Electroanalysis 2011, 23, 1267.
[6] Fu, Y.; Cao, W. H.; Tian, Y. Acta Chim. Sinica 2006, 64, 1761. (付姚, 曹望和, 田莹, 化学学报, 2006, 64, 1761.)
[7] Xue, Q.; Guan, Y. H.; Wang, Z. B. Acta Chim. Sinica 2010, 68, 1603. (薛琴, 管玉红, 王子波, 化学学报, 2010, 68, 1603.)
[8] Zhou, Q.; Zhao, X.; Xiao, J. Talanta 2009, 77, 1774.
[9] Bonato, M.; Ragnarsdottir, K.; Allen, G. Water Air Soil Pollut. 2011, 158, 246.
[10] Song, Y.-Y.; Yang, T.; Cao, J.; Gao, Z.; Lynch, R. Microchim. Acta 2012, 177, 129.
[11] Hayden, S. C.; Allam, N. K.; El-Sayed, M. A. J. Am. Chem. Soc. 2010, 132, 14406.
[12] Feng, X. J.; Sloppy, J. D.; LaTemp, T. J.; Paulose, M.; Komarneni, S.; Bao, N. Z.; Grimes, C. A. J. Mater. Chem. 2011, 21, 13429.
[13] Li, J. Y.; Lu, N.; Quan, X.; Chen, S.; Zhao, H. M. Ind. Eng. Chem. Res. 2008, 47, 3804
[14] Zhou, Q. X.; Huang, Y. R.; Xiao, J. P.; Xie, G. H. Anal. Bioanal. Chem. 2011, 400, 205.
[15] Sun, J.; Shen, J. N.; Yao, S. D. Acta Chim. Sinica 2006, 64, 647. (孙娟, 沈嘉年, 姚书典, 化学学报, 2006, 64, 647.)
[16] Xu, M.; Wang, F. W.; Wei, Y. J. Acta Chim. Sinica 2012, 70, 1407. (徐迈, 王凤武, 魏亦军, 化学学报, 2012, 70, 1407.)
[17] Li, Q. L.; Zhao, J. X.; Li, B. D. Acta Chim. Sinica 2010, 68, 425. (李巧玲, 赵静贤, 李保东, 化学学报, 2010, 68, 425.)
[18] Shi, Y.; Li, J. P.; Xin, J. F. Acta Chim. Sinica 2012, 70, 1257. (施毅, 李建平, 邢俊飞, 化学学报, 2012, 70, 1257.)
[19] Yuan, Z. H.; Sun, Y. C.; Wang, Y. H.; Bie, L. J.; Duan, Y. Q.; Zhang, L. D. Chem. J. Chin. Univ. 2004, 25, 1875. (袁志好, 孙永昌, 王玉红, 别利剑, 段月琴, 张立德, 高等学校化学学报, 2004, 25, 1875.)
[20] Yang, H. P.; Shi, Z. M.; Dai, K. J. Acta Chim. Sinica 2011, 69, 536. (杨汉培, 石泽敏, 戴开静, 化学学报, 2011, 69, 536.)
/
〈 |
|
〉 |