Templated Fabrication of Periodic Array of Nanovoids and Its SERS Performance
Received date: 2012-11-05
Online published: 2012-12-25
Supported by
Project supported by the National Natural Science Foundation of China (No. 21071065), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, and Qinlan Project of Jiangsu Province.
A facile and scalable fabrication method of highly periodic array of nano-sized voids with large area (182 cm2) has been achieved by means of a template related 3-step procedure. A non-close packed (NCP) colloidal SiO2 array was fabricated by programmed spin-coating and in situ polymerization. The colloidal SiO2 arrays are embedded in a polymer matrix, and the spheres of the top layer protrude out of the film, forming a periodic surface. After being etched by HF aqueous solution, the first layer of SiO2 microspheres in the template were etched off and left behind a highly periodic hexagonal array of polymer nanovoids. The periodicity of the resulting polymer nanovoids array is the same as that of colloidal SiO2 arrays. The volume of nanovoid is as small as about 4.72 attoliter per void, and the density of voids can be as high as about 4.9×108 voids/cm2. The metallic nanovoids array could be fabricated by subsequent deposition of Cr and Au layers. The resulting array of metallic nanovoids could be used as surface-enhanced Raman scattering (SERS) active substrates with ultra-sensitivity and excellent reproducibility. The SERS performance of our nanovoids array was probed by benzenethoil. The SERS enhancement factor (EF) can be as high as in the order of 108~109 on average over 182 cm2. The mean relative standard deviation (RSD) of EF is in the range of 5.5% to 8.6% over 182 cm2 which indicates the reproducibility of the substrates is quite good. The methodology leverages the high uniformity of the spin-coated colloidal arrays and well-established physical vapor deposition techniques. The formation of nanovoids array with high periodicity over large areas could lead to important technological applications in nanoelectronics and sensors.
Hong Qinghua , Liu Xuefeng , Fang Yun . Templated Fabrication of Periodic Array of Nanovoids and Its SERS Performance[J]. Acta Chimica Sinica, 2013 , 71(02) : 255 -259 . DOI: 10.6023/A12110874
[1] Jones, M. R.; Osberg, K. D.; Macfarlane, R. J.; Langille, M. R.; Mirkin, C. A. Chem. Rev. 2011, 111, 3736.
[2] Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y.; Ren, B.; Wang, Z. L.; Tian, Z. Q. Nature 2010, 464, 392.
[3] Zhang, C. P.; Guo, Q. H.; Xu, M. M.; Yuan, Y. X.; Yao, J. L.; Gu, R. A. Acta Chim. Sinica 2012, 70, 1327. (张彩萍, 郭清华, 徐敏敏, 袁亚仙, 姚建林, 顾仁敖, 化学学报, 2012, 70, 1327.)
[4] Fan, J. F.; Zhao, C. X.; Fan, L. Z. Acta Chim. Sinica 2012, 70, 229. (范建凤, 赵晨醒, 范楼珍, 化学学报, 2012, 70, 229.)
[5] Lu, J. J.; Guo, H. Y.; Wang, W. Y.; Pan, J. G.; Hu, J. W. Acta Chim. Sinica 2012, 70, 65. (卢军军, 郭红燕, 王维钰, 潘建高, 胡家文, 化学学报, 2012, 70, 65.)
[6] Bian, J.-C.; Chen, Z.-D.; Li, Z.; Yang, F.; He, H.-Y.; Wang, J.; Tan, J. Z. Y.; Zeng, J.-L.; Peng, R.-Q.; Zhang, X.-W.; Han, G.-R. Appl. Surf. Sci. 2012, 258, 6632.
[7] Tognalli, N. G.; Fainstein, A.; Calvo, E. J.; Abdelsalam, M.; Bartlett, P. N. J. Phys. Chem. C 2012, 116, 3414.
[8] Cole, R. M.; Baumberg, J. J.; Garcia de Abajo, F. J.; Mahajan, S.; Abdelsalam, M.; Bartlett, P. N. Nano Lett. 2007, 7, 2094.
[9] Mahajan, S.; Cole, R. M.; Soares, B. F.; Pelfrey, S. H.; Russell, A. E.; Baumberg, J. J.; Bartlett, P. N. J. Phys. Chem. C 2009, 113, 9284.
[10] Cui, L.; Mahajan, S.; Cole, R. M.; Soares, B.; Bartlett, P. N.; Baumberg, J. J.; Hayward, I. P.; Ren, B.; Russell, A. E.; Tian, Z. Q. Phys. Chem. Chem. Phys. 2009, 11, 1023.
[11] Mahajan, S.; Abdelsalam, M.; Suguwara, Y.; Cintra, S.; Russell, A.; Baumberg, J.; Bartlett, P. Phys. Chem. Chem. Phys. 2007, 9, 104.
[12] Johnson, R. P.; Mahajan, S.; Abdelsalam, M. E.; Cole, R. M.; Baumberg, J. J.; Russell, A. E.; Bartlett, P. N. Phys. Chem. Chem. Phys. 2011, 13, 16661.
[13] Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Russell, A. E. Nano Lett. 2005, 5, 2262.
[14] Lal, N. N.; Soares, B. F.; Sinha, J. K.; Huang, F.; Mahajan, S.; Bartlett, P. N.; Greenham, N. C.; Baumberg, J. J. Opt. Express 2011, 19, 11256.
[15] Cintra, S.; Abdelsalam, M. E.; Bartlett, P. N.; Baumberg, J. J.; Kelf, T. A.; Sugawara, Y.; Russell, A. E. Faraday Discuss. 2006, 132, 191.
[16] Abdelsalam, M. E.; Mahajan, S.; Bartlett, P. N.; Baumberg, J. J.; Russell, A. E. J. Am. Chem. Soc. 2007, 129, 7399.
[17] Lang, X.; Qiu, T.; Yin, Y.; Kong, F.; Si, L.; Hao, Q.; Chu, P. K. Langmuir 2012, 28, 8799.
[18] Bartlett, P. N.; Birkin, P. R.; Ghanem, M. A. Chem. Commun. 2000, 1671.
[19] Jang, S. G.; Choi, D.-G.; Heo, C.-J.; Lee, S. Y.; Yang, S.-M. Adv. Mater. 2008, 20, 4862.
[20] Chen, L.; Liu, F.-X.; Zhan, P.; Pan, J.; Wang, Z.-L. Chin. Phys. Lett. 2011, 28, 057801.
[21] Jiang, P. Chem. Commun. 2005, 1699.
[22] Liu, X. F.; Sun, C.-H.; Jiang, P. Chem. Mater. 2010, 22, 1768.
[23] Liu, X. F.; Sun, C. H.; Linn, N. C.; Jiang, B.; Jiang, P. J. Phys. Chem. C 2009, 113, 14804.
[24] Jiang, P.; McFarland, M. J. J. Am. Chem. Soc. 2004, 126, 13778.
[25] Moskovits, M.; Suh, J. S. J. Phys. Chem. 1988, 92(22), 6327.
/
〈 |
|
〉 |