Article

Analysis of Volatiles during Grape Deterioration Using FTIR

  • Wang Wenzhong ,
  • Dong Daming ,
  • Zheng Wengang ,
  • Han Junfeng ,
  • Ye Song ,
  • Jiao Leizi ,
  • Zhao Xiande
Expand
  • a National Engineering Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097;
    b School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004

Received date: 2012-11-05

  Online published: 2012-12-28

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 31101748, 31271614) and Innovation Building Program of Beijing Academy of Agriculture and Forestry Sciences (No. KJCX201102001).

Abstract

Grape is very perishable in transportation and storage, so its early warning is particularly important to lower the risks of large-scale deterioration. In order to study grape deterioration process, we analyzed the volatile compounds from grapes using Fourier transform infrared (FTIR) spectroscopy. Several grapes were put in the sample compartment of the FTIR spectrometer for 2 h per day. Then, the volatile compounds vaporized from the grapes were measured directly using the spectrometer. A high energy ceramic IR-source was used to improve the signal-to-noise ratio. We collected the FTIR spectrum before sample was put in as a background to eliminate the influence of air. Spectral signatures of the volatiles from grapes were analyzed and used to classify the grape samples into deterioration or not. By spectral analysis, the volatile mainly includes ethyl acetate, ethanol and carbon dioxide. The above three volatile vaporized more and more from the grapes during deterioration process. We also found that the release rates of volatile compounds get its highest value when the grapes just started deteriorating, so, this value could be used to monitor the beginning of deterioration. The methods to classify grapes deterioration levels were also studied. Firstly, grape deterioration processes were divided into three stages, fresh, slight deterioration and severe deterioration, by appearance and sensory evaluation. Then, a principle compounds analysis (PCA) was used for unsupervised classification to FTIR spectra. Results showed that this method could distinguish grapes into fresh and deterioration by choosing proper data pre-processing algorithms. This paper provides a new way to study the fruit deterioration mechanism, and premise a foundation for developing early-warning equipment for evaluation and monitoring fruit deterioration during its storage and transportation. Furthermore, because of the step change of release rates of volatile compounds at the beginning of deterioration, this kind of classifying method and monitoring system may not influenced by grapes quantity and store patterns.

Cite this article

Wang Wenzhong , Dong Daming , Zheng Wengang , Han Junfeng , Ye Song , Jiao Leizi , Zhao Xiande . Analysis of Volatiles during Grape Deterioration Using FTIR[J]. Acta Chimica Sinica, 2013 , 71(02) : 234 -238 . DOI: 10.6023/A12110872

References

[1] Li, Y. M.; Tang, L. H.; Li, J. H. Electrochem. Commun. 2009, 11, 846.

[2] Ye, W. C.; Kou, H. H.; Liu, Q. Z. Int. J. Hydrogen Energy 2012, 37, 4088.

[3] Zhang, H. M.; Zhou, W. Q.; Du, Y. K.; Yang, P.; Xu, J. K. Acta Chim. Sinica 2010, 68, 2529. (张红梅, 周卫强, 杜玉扣, 杨平, 徐景坤, 化学学报, 2010, 68, 2529.)

[4] Wang, Z. H.; Chen, T. W.; Li, J.; Wang, D.; Qiao, H. Y.; Huang, A.-P. Acta Chim. Sinica 2009, 67, 392. (汪振辉, 陈体伟, 李晶, 王栋, 乔海燕, 黄爱平, 化学学报, 2009, 67, 392.)

[5] Zhou, Y. H.; Cen, S. Q.; Li, Z. L.; Niu, Z. J. Acta Chim. Sinica 2007, 65, 2669. (周颖华, 岑树琼, 李则林, 牛振江, 化学学报, 2007, 65, 2669.)

[6] Sauda, T.; Ogiwara, N.; Takasu, Y.; Sugimoto, W. J. Phys. Chem. C 2010, 114, 13390.

[7] Lee,Y. H.; Lee, G.; Shim, J. H.; Hwang, S.; Kwak, J.; Lee, K.; Song, H.; Park, J.-T. Chem. Mater. 2006, 18, 4209.

[8] Wang, S. Y.; Wang, X.; Jiang S. P. Langmuir 2008, 24, 10505.

[9] Liu, S. H.; Yu, W. Y.; Chen, C. H.; Lo, A. Y.; Hwang, B. J.; Chien, S. H.; Liu, S. B. Chem. Mater. 2008, 20, 1622.

[10] Liu, Z. L.; Su, F. B.; Zhang, X. H.; Tay, S. W. ACS Appl. Mater. Interfaces 2011, 3, 3824.

[11] Xu, J. B.; Hua, K. F.; Sun, G. Z.; Wang, C. Electrochem. Commun. 2006, 8, 982.

[12] Sandoval Gonzalez, A.; Borja Arco, E.; Escalante, J. Int. J. Hydrogen Energy 2012, 37, 1052.

[13] Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489.

[14] Prabhuram, J.; Zhao, T. S.; Tang, Z. K.; Chen, R.; Liang, Z. X. J. Phys. Chem. B 2006, 110, 5245.

[15] Wu, G.; Swaidan, R.; Li, D.; Li. N. Electrochim. Acta 2008, 53, 7622.

[16] Hernández-Fernández, P.; Nuño, R.; Fatás, E. Int. J. Hydrogen Energy 2011, 36, 8267.

[17] Kakati, N.; Maiti, J.; Jee, S. H.; Lee, S. H.; Yoon, Y. S. J. Alloys Compd. 2011, 509, 5617.

[18] Kim, C.; Kwon, H. H.; Song, I. K.; Sung, Y. E.; Chung, W. S.; Lee, H. I. J. Power Sources 2007, 171, 404.

[19] Rozhkov, A. V.; Giavaras, G.; Bliokh, Y. P.; Freilikher, V.; Nori, F. Phys. Rev. 2011, 53, 77.

[20] Xu, C. W.; Su, Y. Z.; Tan, L. L.; Liu, Z. L. Electrochim. Acta 2009, 54, 6322.

[21] Li, Y. J.; Gao, W;. Ci, L. J.; Wang, C. M. Carbon 2010, 48, 1129.

[22] Sharma, S.; Ganguly, A.; Papakonstantinou, P.; Miao, X.-P.; Li, M.-X. J. Phys. Chem. C 2010, 114, 19464.

[23] Wietechaa, M.; Zhu, J.; Gao, G.-H.; Wang, N. J. Power Sources 2012, 198, 34.

[24] Niu, L.; Li, Q. H.; Wei, F. H.; Chen, X.; Wang, H. Synth. Met. 2003, 139, 271.

[25] Søgaard, M.; Odgaard, M.; Skou, E. M. Solid State Ionics 2001, 145, 31.

[26] Hamnett, A. Catal. Today 1997, 38, 445.

[27] Baldauf, M.; Preidel, W. J. Power Sources 1999, 84, 162.

[28] Huang, Y. Y.; Zheng, S. Y.; Lin, X. Z.; Su, L. Q.; Guo, Y. L. Electrochim. Acta 2012, 63, 346.

[29] Ye, W. C.; Kou, H. H.; Liu, Q. Z. Int. J. Hydrogen Energy 2012, 37, 4096.

[30] Nicholson, R. S.; Shain, I. Anal. Chem. 1964, 36, 706.

[31] Wu, G.; Li, L.; Xu, B. Q. Electrochim. Acta 2004, 50, 7.

[32] Wang, Z. B.; Yin, Z. P.; Shao, Y. Y. J. Power Sources 2007, 165, 9.

[33] Laviron, E.; Roullier, L. J. Electroanal. Chem. 1980, 115, 65.

[34] Khan, A. S. A.; Ahmed, R.; Mirza, M. L. Turk. J. Chem. 2008, 32, 750.

[35] Wang, Z. H.; Xia, J. F.; Zhu, L. Y.; Zhang, F. F. Sens. Actuators B-Chem. 2012, 161, 133.

Outlines

/