Article

Screening of Metabolite Regulating Lactic Acid Production of Exiguobacterium aurantiacum ATCC49676 by Metabolic Fingerprint Analysis

  • Lian Rongwei ,
  • Tian Jing ,
  • Gao Peng ,
  • Wang Xiyue ,
  • Fei Xu ,
  • Wang Yi ,
  • Xu Guowang
Expand
  • a School of Bioengineering, Dalian Polytechnic University, Dalian 116034;
    b CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023

Received date: 2012-11-07

  Online published: 2012-11-26

Supported by

Project supported by the “973” project (No. 2007CB707802), Knowledge Innovation Program of Chinese Academy of Sciences (No. KSCX1-YW-11), the National Natural Science Foundation of China (No. 20776029), and the program of Talents in Universities supported by Liaoning Province (No. 2008RC07).

Abstract

A strain of Exiguobacterium aurantiacum ATCC49676 was found to be of great potential to produce lactic acid (LA). In order to screen the metabolites that might regulate or affect the acid yield, a relative higher LA production condition was defined through full factorial experiment design. Fresh cultures harvested from the basic and the higher LA production conditions were subjected to metabolic fingerprint analysis by gas chromatography-mass spectrometry. Significance analysis indicated a distinct change of an intercellular metabolite-L-glutamic acid (Glu). When ATCC49676 was treated by Glu, LA yield declined with the increasing added Glu concentrations. Relative enzyme quantification confirmed that Glu decreased the intracellular lactate dehydrogenase content. This study proved the merit of metabolic fingerprint analysis in exploring the phenotype specific intracellular metabolite and its potential roles in improving industrial fermentation efficiencies.

Cite this article

Lian Rongwei , Tian Jing , Gao Peng , Wang Xiyue , Fei Xu , Wang Yi , Xu Guowang . Screening of Metabolite Regulating Lactic Acid Production of Exiguobacterium aurantiacum ATCC49676 by Metabolic Fingerprint Analysis[J]. Acta Chimica Sinica, 2012 , 70(24) : 2513 -2517 . DOI: 10.6023/A12110883

References

[1] Pikuta, E. V.; Hoover, R. B.; Tang, J. Crit. Rev. Microbiol. 2007, 33, 183.

[2] Da Cruz, G. F.; Angolini, C. F. F.; De Oliveira, L. G.; Lopes, P. F.; De Vasconcellos, S. P.; Crespim, E.; de Oliverira, V. M.; Neto, E. V. D.; Marsaioli, A. J. Appl. Microbiol. Biotechnol. 2010, 87, 319.

[3] Hough, D. W.; Danson, M. J. Curr. Opin. Chem. Biol. 1999, 3, 39.

[4] Bohm, G.; Jaenicke, R. Curr. Opin. Struct. Biol. 1998, 8, 738.

[5] Salameh, M.; Wiegel, J. Adv. Appl. Microbiol. 2007, 253.

[6] Xu, G.; Yang, J. Chin. J. Chromatogr. 2003, 21, 316.

[7] Ruperez, F. J.; Garcia-Martinez, D.; Baena, B.; Maeso, N.; Vallejo, M.; Angulo, S.; Garcia, A.; Ibanez, E.; Senorans, F. J.; Cifuentes, A.; Barbas, C. J. Pharm. Biomed. Anal. 2009, 49, 786.

[8] Wachsrnuth, C. J.; Almstetter, M. F.; Waldhier, M. C.; Gruber, M. A.; Nurnberger, N.; Oefner, P. J.; Dettmer, K. Anal. Chem. 2011, 83, 7514.

[9] Tian, J.; Sang, P.; Gao, P.; Fu, R.; Yang, D.; Zhang, L.; Zhou, J.; Wu, S.; Lu, X.; Li, Y.; Xu, G. J. Sep. Sci. 2009, 32, 2281.

[10] Cornish-Bowden, A.; Cardenas, M. L. Trends Biochem. Sci. 2001, 26, 463.

[11] Raamsdonk, L. M.; Teusink, B.; Broadhurst, D.; Zhang, N.; Hayes, A.; Walsh, M. C.; Berden, J. A.; Brindle, K. M.; Kell, D. B.; Rowland, J. J.; Westerhoff, H. V.; van Dam, K.; Oliver, S. G. Nat. Biotechnol. 2001, 19, 45.

[12] Li, X.; Lu, X.; Tian, J.; Gao, P.; Kong, H.; Xu, G. Anal. Chem. 2009, 81, 4468.

[13] Behrends, V.; Ryall, B.; Wang, X.; Bundy, J. G.; Williams, H. D. Mol. Biosyst. 2010, 6, 562.

[14] van der Werf, M. J.; Overkamp, K. M.; Muilwijk, B.; Koek, M. M.; van der Werff-van der Vat, B. J. C.; Jellema, R. H.; Coulier, L.; Hankemeier, T. Mol. Biosyst. 2008, 4, 315.

[15] Fiehn, O.; Kopka, J.; Dormann, P.; Altmann, T.; Trethewey, R. N.; Willmitzer, L. Nat. Biotechnol. 2000, 18, 1157.

[16] Koek, M. M.; Muilwijk, B.; van der Werf, M. J.; Hankemeier, T. Anal. Chem. 2006, 78, 1272.

[17] van der Greef, J.; Stroobant, P.; van der Heijden, R. Curr. Opin. Chem. Biol. 2004, 8, 559.

[18] Li, C.; Bai, J. H.; Cai, Z. L.; Fan, O. Y. J. Biotechnol. 2002, 93, 27.

[19] Vadde, K. K.; Syrotiuk, V. R.; Montgomery, D. C. IEEE Trans. Mobile Comput. 2006, 5, 622.

[20] Van der Werf, M. J.; Jellema, R. H.; Hankemeier, T. J. Ind. Microbiol. Biotechnol. 2005, 32, 234.

[21] Tusher, V. G.; Tibshirani, R.; Chu, G. Proc. Natl. Acad. Sci. U. S. A. 2001, 98, 5116.

[22] Maas, R. H.; Bakker, R. R.; Jansen, M. L.; Visser, D.; De Jong, E.; Eggink, G.; Weusthuis, R. A. Appl. Microbiol. Biotechnol. 2008, 78, 751.

[23] Al-Jassabi, S. Biochemistry (Mosc.) 2002, 67, 786.

[24] Sato, H.; Orishimo, K.; Shirai, T.; Hirasawa, T.; Nagahisa, K.; Shimizu, H.; Wachi, M. J. Biosci. Bioeng. 2008, 106, 51.

[25] Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. Anal. Chem. 2006, 78, 779.

[26] Maas, R. H.; Bakker, R. R.; Eggink, G.; Weusthuis, R. A. Appl. Microbiol. Biotechnol. 2006, 72, 861.

Outlines

/