Article

Charge Recombination in Dye-sensitized Solar Cells with Low Adsorbed Concentration of Dye

  • Tang Xiao ,
  • Wang Yuxun
Expand
  • a College of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331;
    b College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030

Received date: 2012-10-19

  Online published: 2012-12-31

Supported by

Project supported by the Young Scientists Fund from the National Natural Science Foundation of China (No. 510029194) and Chongqing Natural Science Foundation from Chongqing Science & Technology Commission (No. CSTC2010BB4293).

Abstract

Photovoltaic conversion performances of dye-sensitized solar cells (DSCs) are significantly influenced by the interface charge recombination in DSCs. Lots of factors affecting the charge recombination, such as surface states of TiO2 and components of electrolytes, have been studied and dyes have been always ignored for the charge recombination in DSCs. Although the charge recombination occurring between the injection electrons and triiodide in electrolyte is calculated to take priority kinetically to the one between the injection electrons and oxidized dye molecules, dyes are not independent from the electrolyte related electron recombination. Instead by dye molecules themselves, the chance of injection electrons recaptured by triiodide in electrolyte could rise due to the increase of the adsorbed concentration of dye, which leads to the local concentration of triiodide increasing. In this paper, an effect of low charge recombination in DSCs with low adsorbed concentration of dye is observed. The adsorbed concentration of dye is defined as the adsorbed amount of dye in unit specific surface area of TiO2 films and adjusted by adsorbing similar amount of dye on the surface of TiO2 films with different film thickness. The influence of the adsorbed concentration of dye on the charge recombination in DSC is investigated by the electrochemical impedance spectroscopy (EIS) technology. It turns out that with the adsorbed concentration of dye decreasing, the electron lift time within TiO2 film and the interface resistance of TiO2/electrolyte increase significantly, which indicates the charge recombination in DSC decrease. Owing to this effect, with the TiO2 film thickness increasing from about 2 μm to 18 μm, the cells keep the fill factor (ff) as high as 0.72~0.80. And the energy conversion efficiency loss, which resulted from the increase of the active area of TiO2 photoanode from 0.25 cm2 to 1 cm2, decreased from 34.7% to 19.6%.

Cite this article

Tang Xiao , Wang Yuxun . Charge Recombination in Dye-sensitized Solar Cells with Low Adsorbed Concentration of Dye[J]. Acta Chimica Sinica, 2013 , 71(02) : 193 -198 . DOI: 10.6023/A12100795

References

[1] Yella, A.; Lee, H.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K. E.; Diau, W.; Yeh, C.; Zakeeruddin, S. M.; Grätzel, M. Science 2011, 334, 629.

[2] Lan, Z.; Wu, J.; Lin, J.; Huang, M. Electrochim. Acta 2012, 62, 313.

[3] Ito, S.; Murakami, T. N.; Comte, P.; Liska, P.; Grätzel, C.; Nazeeruddin, M. K.; Grätzel, M. Thin Solid Films 2008, 516, 4613.

[4] Filipi?, M.; Berginc, M.; Smole, F.; Topi?, M. Curr. Appl. Phys. 2012, 12, 238.

[5] Kim, Y.; Yoo, B. J.; Vittal, R.; Lee,Y.; Park, N.; Kim, K. J. Power Sources 2008, 175, 914.

[6] Frank, A. J.; Kopidakis, N.; Lagemaat, J. Coord. Chem. Rev. 2004, 248, 1165.

[7] Nazeeruddin, M. K.; Baranoff, E.; Grätzel, M. Solar Energy 2011, 85, 1172.

[8] Grätzel, M. Curr. Appl. Phys. 2006, 6S1, e2.

[9] Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949.

[10] Durrant, J. R. J. Photochem. Photobiol. A: Chem. 2002, 148, 5.

[11] He, J. J.; Chen, S. X.; Wang, T. T.; Zeng, H. P. Chin. J. Org. Chem. 2012, 32, 472. (何俊杰, 陈舒欣, 王婷婷, 曾和平, 有机化学, 2012, 32, 472.)

[12] Peter, L. M.; Wijayantha, K. G. U. Electrochem. Commun. 1999, 1, 576.

[13] Wang, Q.; Moser, J. E.; Grä1tzel, M. J. Phys. Chem. B 2005, 109, 14945.

[14] Kaleji, B. K.; Mamoory, R. S. Mater. Res. Bull. 2012, 47, 362.

[15] Li, C.; Luo, Y.; Guo, X.; Li, D.; Mi, J.; Sø, L.; Hald, P.; Meng, Q.; Iversen, B. B. J. Solid State Chem. 2012, 196, 504.

[16] Kern, R.; Sastrawan, R.; Ferber, J.; Stangl, R.; Luther, J. Electrochim. Acta 2002, 47, 4213.

[17] Liu, Y.; Suna, X.; Taia, Q.; Hua, H.; Chena, B.; Huanga, N.; Seboa, B.; Zhao, X. J. Power Sources 2011, 196, 475.

[18] Bisquert, J. J. Phys. Chem. B 2002, 106, 325.

[19] Lee, W. J.; Ramasamya, E.; Lee, D. Y.; Song, J. S. Solar Energy Materials & Solar Cells 2007, 91, 1676.

[20] Parka, J.; Koo, H.; Yoo, B.; Yoo, K.; Kim, K.; Choi, W.; Park, N. Solar Energy Materials & Solar Cells 2007, 91, 1749.

[21] Grätzel, M. Curr. Opin. Colloid Interface Sci. 1999, 4, 314.

Outlines

/