Article

Use of Surface-enhanced Raman Spectroscopy for the Test of Residuals of Prohibited and Restricted Drugs in Fish Muscle

  • Li Chunying ,
  • Lai Keqiang ,
  • Zhang Yuanyuan ,
  • Pei Lu ,
  • Huang Yiqun
Expand
  • College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306

Received date: 2012-10-28

  Online published: 2013-01-04

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 61250002, 31250006), Science and Technology Commission of Shanghai Municipality (Nos. 09PJ1405200, 09320503800).

Abstract

The objective of this study was to investigate the feasibility of applying surface-enhanced Raman spectroscopy (SERS) coupled with partial least squares regression (PLSR) to detect and determine prohibited or restricted residual fish drugs including malachite green, crystal violet, chloramphenicol and sulfamerazine. Standard solutions of malachite green (0.5~50 μg/L), crystal violet (5~100 μg/L), chloramphenicol (50~5.0×103 μg/L) and sulfamerazine (500~5.0×103 μg/L) were used to determine the sensibility of the SERS method as well as the accuracy of the PLSR models for quantitative analyses of the fish drugs. In addition, fish muscles artificially contaminated with malachite green (0.5~50 μg/kg) or crystal violet (10~100 μg/kg) were used for the study. Two different types of commercial gold-coated SERS substrates were used to acquire SERS spectra (400~2000 cm-1) of standard solutions or fish extracts. Then, laser source (633 and 780 nm) and laser power (5 and 10 mW) were varied for optimum results to collect spectra of different drugs. PLSR was applied for quantitative analysis of the tested fish drugs. The results indicated that SERS technology is a sensitive method for analyzing industrial dyes, which could detect malachite green and crystal violet at concentration levels as low as 0.8 and 10 μg/L, respectively. For chloramphenicol and sulfamerazine, the lowest concentrations could be detected were 50 and 500 μg/L, respectively. The PLSR models for four standard solutions yielded R2 of 0.865 to 0.954. For malachite green and crystal violet extracts from fish, the lowest concentrations detected were 1.0 and 20 μg/kg, respectively, which indicated great potential of applying SERS in determination of residual prohibited or restricted fish drugs in food system.

Cite this article

Li Chunying , Lai Keqiang , Zhang Yuanyuan , Pei Lu , Huang Yiqun . Use of Surface-enhanced Raman Spectroscopy for the Test of Residuals of Prohibited and Restricted Drugs in Fish Muscle[J]. Acta Chimica Sinica, 2013 , 71(02) : 221 -226 . DOI: 10.6023/A12100831

References

[1] Alderman, D. J. J. Fish. Dis. 1985, 8, 289.

[2] Littlefield, N. A.; Blackwell, B.; Hewitt, C. C.; Gaylor, D. W. Fundam. Appl. Toxicol. 1985, 5, 902.

[3] Walker, C. W.; Brown, D. F. J. J. Med. Microbiol. 1990, 31, 133.

[4] Ding, S.; Chen, J.; Jiang, H.; He, J.; Shi, W.; Zhao, W.; Shen, J. J. Agric. Food Chem. 2006, 54, 6139.

[5] Cai, Z.; Zhang, Y.; Pan, H.; Tie, X.; Ren, Y. J. Chromatogr. A 2008, 1200, 144.

[6] Bogusz, M. J.; Hassan, H.; Al-Enazi, E.; Ibrahim, Z.; Al-Tufail, M. J. Chromatogr. B 2004, 807, 343.

[7] Chourpa, I.; Lei, F. H.; Dubois, P.; Manfait, M.; Sockalingum, G. D. Chem. Soc. Rev. 2008, 37, 993.

[8] Kneipp, K.; Wang, Y.; Kneipp, H.; Perelman, L. T.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Phys. Rev. Lett. 1997, 78, 1667.

[9] Constantino, C. J. L.; Lemma, T.; Antunes, P. A.; Aroca, R. Anal. Chem. 2001, 73, 3674.

[10] He, L.; Kim, N. J.; Li, H. J. Agric. Food Chem. 2008, 56, 9843.

[11] Strehle, K. R.; Cialla, D.; Rosch, P.; Henkel, T.; Kohler, M.; Popp, J. Anal. Chem. 2007, 79, 1542.

[12] Liang, E. J.; Ye, X. L.; Kiefer, W. J. Phys. Chem. A 1997, 101, 7330.

[13] Sajan, D.; Sockalingum, G. D.; Manfait, M.; Joe, I. H.; Jayakumar, V. S. J. Raman Spectrosc. 2008, 39, 1772.

[14] Cao, X.; Sun, C.; Thamann, T. J. J. Pharm. Sci. 2005, 94, 1881.

[15] Sutherland, W. S.; Lasema, J. J.; Angebranndt, M. J.; Winefordner, J. D. Anal. Chem. 1990, 62, 689.

[16] Smith, W. E. Chem. Soc. Rev. 2008, 37, 955.

[17] Andersen, W. C.; Turnipseed, S. B.; Roybal, J. E. J. Agric. Food Chem. 2006, 54, 4517.

[18] Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M. Anal. Chem. 2012, 84, 255.

[19] Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Food Bioprocess Technol. 2012, On line.

[20] Zhang, Z.; Liu, R.; Xu, G.; Liu, J. Acta Chim. Sinica 2012, 70, 1686. (张宗绵, 刘睿, 徐敦明, 刘景富, 化学学报, 2012, 70, 1686.)

[21] He, L.; Liu, Y.; Lin, M.; Awika, J.; Ledoux, D. R.; Li, H.; Mustapha, A. Sens. Instrum. Food Qual. 2008, 2, 247.

[22] Lai, K.; Zhang, Y.; Du, R.; Zhai, F.; Rasco, B. A.; Huang, Y. Sens. Instrum. Food Qual. 2011, 5, 19.

[23] Andersen, W. C.; Roybal, J. E.; Turnipseed, S. B. J. AOAC. Int. 2005, 88, 1292.

[24] Zhai, F.; Huang, Y.; Li, C.; Wang, X.; Lai, K. J. Agric. Food Chem. 2011, 59, 10023.

[25] Chu, H.; Huang, Y.; Zhao, Y. Appl. Spectrosc. 2008, 62, 922.

[26] Xu, Q.; Liang, Y. Chemom. Intell. Lab. Syst. 2001, 56, 1.

Outlines

/