Communications

DNA Catalyzed Dithioacetalization in Water

Expand
  • State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

Received date: 2012-12-22

  Online published: 2013-01-08

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20773123, 20621063, 31000392).

Abstract

The most popular hypothesis of precellular life is the “RNA World”, which is utilizing RNA as both genetic as well as catalytic material. The chemical similarity between RNA and DNA leads researchers to investigate whether DNA has the catalytic function, although DNA is commonly viewed as a genetic carrier with a ubiquitous double-stranded architecture in living world. Nevertheless, the catalytic DNA has not been discovered in nature to date. In recent years, the catalytic function of DNA in nonbiological applications has aroused much interest to chemists in chemical synthesis such as DNA-templated organic synthesis and DNA-based asymmetric catalysis. However, the investigation of DNA as a direct catalyst for organic synthesis is largely elusive. Here we report that double-stranded DNA from herring sperm can catalyze the dithioacetalization in water for a wide range of aldehydes under mild reaction conditions. It is proposed that the phosphate groups of DNA together with the duplex architecture are responsible for the catalytic reaction.

Cite this article

Wang Changhao, Li Yinghao, Jia Guoqing, Lu Shengmei, Liu Yan, Li Can . DNA Catalyzed Dithioacetalization in Water[J]. Acta Chimica Sinica, 2013 , 71(01) : 36 -39 . DOI: 10.6023/A12121089

References

[1] Ralls, J. W.; Dodson, R. M.; Riegel, B. J. Am. Chem. Soc. 1949, 71, 3320.
[2] Djerassi, C.; Gorman, M. J. Am. Chem. Soc. 1953, 75, 3704.
[3] Aoyama, T.; Takido, T.; Kodomari, M. Synlett 2004, 2307.
[4] Tani, H.; Masumoto, K.; Inamasu, T.; Suzuki, H. Tetrahedron Lett. 1991, 32, 2039.
[5] Firouzabadi, H.; Karimi, B.; Eslami, S. Tetrahedron Lett. 1999, 40, 4055.
[6] Moghaddam, F. M.; Bardajee, G. R.; Oskui, A. A. Phosphorus, Sulfur Silicon Relat. Elem. 2006, 181, 1445.
[7] Shaterian, H. R.; Hosseinian, A.; Ghashang, M. Synth. Commun. 2008, 38, 4097.
[8] Corey, E. J.; Seebach, D. Angew. Chem. Int. Ed. Engl. 1965, 4, 1075.
[9] Seebach, D. Angew. Chem. Int. Ed. Engl. 1969, 8, 639.
[10] Seebach, D. Angew. Chem. Int. Ed. Engl. 1979, 18, 239.
[11] Li, C. J. Chem. Rev. 2005, 105, 3095.
[12] Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
[13] Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302.
[14] Simon, M.-O.; Li, C.-J. Chem. Soc. Rev. 2012, 41, 1415.
[15] Otto, S.; Bertoncin, F.; Engberts, J. J. Am. Chem. Soc. 1996, 118, 7702.
[16] Li, H. J.; Zhao, J. L.; Chen, Y. J.; Liu, L.; Wang, D.; Li, C. J. Green Chem. 2005, 7, 61.
[17] Fousteris, M.; Chevrin, C.; Le Bras, J.; Muzart, J. Green Chem. 2006, 8, 522.
[18] Guizzetti, S.; Benaglia, M.; Raimondi, L.; Celentano, G. Org. Lett. 2007, 9, 1247.
[19] Tandon, V. K.; Maurya, H. K. Tetrahedron Lett. 2010, 51, 3843.
[20] Landelle, G.; Claraz, A.; Oudeyer, S.; Levacher, V. Tetrahedron Lett. 2012, 53, 2414.
[21] Ceschi, M. A.; Felix, L. D.; Peppe, C. Tetrahedron Lett. 2000, 41, 9695.
[22] Manabe, K.; Iimura, S.; Sun, X. M.; Kobayashi, S. J. Am. Chem. Soc. 2002, 124, 11971.
[23] Dong, D. W.; Yan, O. Y.; Yu, H. F.; Liu, Q.; Liu, J.; Wang, M.; Zhu, J. J. Org. Chem. 2005, 70, 4535.
[24] Karimi, B.; Khalkhali, M. J. Mol. Catal. A: Chem. 2007, 271, 75.
[25] Weng, S.-S.; Chang, S.-C.; Chang, T.-H.; Chyn, J.-P.; Lee, S.-W.; Lin, C.-A.; Chen, F.-K. Synthesis 2010, 1493.
[26] Rohman, M. R.; Rajbangshi, M.; Laloo, B. M.; Sahu, P. R.; Myrboh, B. Tetrahedron Lett. 2010, 51, 2862.
[27] Bahrami, K.; Khodaei, M. M.; Tajik, M.; Soheilizad, M. J. Sulfur Chem. 2011, 32, 397.
[28] Robertson, M. P.; Joyce, G. F. Cold Spring Harb. Perspect. Biol. 2012, 4, 1.
[29] Bada, J. L.; Lazcano, A. Science 2002, 296, 1982.
[30] Poole, A. M.; Jeffares, D. C.; Penny, D. J. Mol. Evol. 1998, 46, 1.
[31] Lorsch, J. R.; Szostak, J. W. Acc. Chem. Res. 1996, 29, 103.
[32] Gilbert, W. Nature 1986, 319, 618.
[33] Pace, N. R.; Marsh, T. L. Origins Life Evol. Biosphere 1985, 16, 97.
[34] Kruger, K.; Grabowski, P. J.; Zaug, A. J.; Sands, J.; Gottschling, D. E.; Cech, T. R. Cell 1982, 31, 147.
[35] Guerriertakada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. Cell 1983, 35, 849.
[36] Li, X. Y.; Liu, D. R. Angew. Chem. Int. Ed. 2004, 43, 4848.
[37] Silverman, A. P.; Kool, E. T. Chem. Rev. 2006, 106, 3775.
[38] Roelfes, G.; Feringa, B. L. Angew. Chem. Int. Ed. 2005, 44, 3230.
[39] Boersma, A. J.; Megens, R. P.; Feringa, B. L.; Roelfes, G. Chem. Soc. Rev. 2010, 39, 2083.
[40] Silverman, S. K. Angew. Chem. Int. Ed. 2010, 49, 7180.
[41] Fan, J.; Sun, G.; Wan, C.; Wang, Z.; Li, Y. Chem. Commun. 2008, 3792.
[42] Sun, G.; Fan, J.; Wang, Z.; Li, Y. Synlett 2008, 2491.
[43] De Rosa, M.; Di Marino, S.; D'Ursi, A. M.; Strianese, M.; Soriente, A. Tetrahedron 2012, 68, 3086.
[44] Wang, C.; Jia, G.; Zhou, J.; Li, Y.; Liu, Y.; Lu, S.; Li, C. Angew. Chem. Int. Ed. 2012, 51, 9352.
[45] Wang, C.; Li, Y.; Jia, G.; Liu, Y.; Lu, S.; Li, C. Chem. Commun. 2012, 48, 6232.
Outlines

/