Article

Pd Nanoparticles Encapsulated in Hollow Mesoporous Aluminosilica Nanospheres as an Efficient Catalyst for Multistep Reactions and Size-Selective Hydrogenation

  • Liu Zhaohui ,
  • Fang Xiaoliang ,
  • Chen Cheng ,
  • Zheng Nanfeng
Expand
  • State Key Laboratory for Physical Chemistry of Solid Surfaces and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Received date: 2012-11-28

  Online published: 2013-01-11

Supported by

Project supported by the Ministry of Science and Technology of China (No. 2011CB932403), the National Natural Science Foundation of China (Nos. 21131005, 21021061, 20925103, 20923004), and the Fok Ying Tung Education Foundation (No. 121011).

Abstract

In this work, yolk-shell structured Pd@hollow mesoporous aluminosilica nanospheres (designated as Pd@HMAN) have been successfully fabricated by a straightforward synthetic route. Core-shell Pd@SiO2 nanospheres were firstly obtained by silica coating of in-situ synthesized Pd nanoparticles in a Brij56-cyclohexane-water reverse micelle system. Simply by alkaline etching of as-prepared Pd@SiO2 core-shell nanospheres in the presence of CTAB, Na2CO3 and NaAlO2, Pd@HMAN particles with high porosity were obtained. As the mesoporous aluminosilica shells can serve as acid catalysts, and the Pd yolks can be applied to catalytic hydrogenation, the as-prepared Pd@HMAN can be used as a stable multifunctional catalyst for multistep reactions. Moreover, due to their adjustable pore parameters, Pd@HMAN after simple thermal treatment can be further applied in the size-selective hydrogenation.

Cite this article

Liu Zhaohui , Fang Xiaoliang , Chen Cheng , Zheng Nanfeng . Pd Nanoparticles Encapsulated in Hollow Mesoporous Aluminosilica Nanospheres as an Efficient Catalyst for Multistep Reactions and Size-Selective Hydrogenation[J]. Acta Chimica Sinica, 2013 , 71(03) : 334 -338 . DOI: 10.6023/A12110977

References

[1] (a) Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Nat. Mater. 2009, 8, 126;

     (b) Ikeda, S.; Ishino, S.; Harada, T.; Okamoto, N.; Sakata, T.; Mori, H.; Kuwabata, S.; Torimoto, T.; Matsumura, M. Angew. Chem., Int. Ed. 2006, 45, 7063; 

     (c) Liu, S.; Han, M. Y. Chem. Asian J. 2010, 5, 36; 

     (d) Taguchi, A.; Schüth, F. Microporous Mesoporous Mater. 2005, 77, 1; 

     (e) Chen, C.; Fang, X. L.; Wu, B. H.; Huang, L. J.; Zheng, N. F. ChemCatChem 2012, 4, 1578.

[2] (a) Chen, D.; Li, L. L.; Tang, F. Q.; Qi, S. Adv. Mater. 2009, 21, 3804; 

     (b) Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. ACS nano 2010, 4, 529; 

     (c) Tang, S. H.; Huang, X. Q.; Chen, X. L.; Zheng, N. F. Adv. Funct. Mater. 2010, 20, 2442.

[3] (a) Lou, X. W.; Archer, L. A.; Yang, Z. C. Adv. Mater. 2008, 20, 3987; 

     (b) Zhang, W. M.; Hu, J. S.; Guo, Y. G.; Zheng, S. F.; Zhong, L. S.; Song, W. G.; Wan, L. J. Adv. Mater. 2008, 20, 1160.

[4] (a) Arnal, P. M.; Comotti, M.; Schüth, F. Angew. Chem., Int. Ed. 2006, 45, 8224; 

     (b) Huang, X. Q.; Guo, C. Y.; Zuo, J. Q.; Zheng, N. F.; Stucky, G. D. Small 2009, 5, 361; 

     (c) Du, J.; Qi, J.; Wang, D.; Tang, Z. Y. Energy Environ. Sci. 2012, 5, 6914.

[5] Caruso, F.; Caruso, R. A.; Mohwald, H. Science 1998, 282, 1111.

[6] (a) Li, W. J.; Sha, X. X.; Dong, W. J.; Wang, Z. C. Chem. Commun. 2002, 2434; 

     (b) Yu, M. H.; Wang, H. N.; Zhou, X. F.; Yuan, P.; Yu, C. Z. J. Am. Chem. Soc. 2007, 129, 14576; (c) Wu, X. J.; Xu, D. S. Adv. Mater. 2010, 22, 1516.

[7] (a) Fang, X. L.; Chen, C.; Liu, Z. H.; Liu, P. X.; Zheng, N. F. Nanoscale 2011, 3, 1632; 

     (b) Xia, Y. S.; Tang, Z. Y. Adv. Funct. Mater. 2012, 22, 2585.

[8] (a) Shylesh, S.; Wagener, A.; Seifert, A.; Ernst, S.; Thiel, W. R. Angew. Chem., Int. Ed. 2010, 49, 184;

     (b) Fang, X. L.; Liu, Z. H.; Hsieh, M.-F.; Chen, M.; Liu, P. X.; Chen, C.; Zheng, N. F. ACS nano 2012, 6, 4434; 

     (c) Huang, Y. L.; Xu, S.; Lin, V. S.-Y. Angew. Chem., Int. Ed. 2011, 50, 661; 

     (d) Zeidan, R. K.; Hwang, S. J.; Davis, M. E. Angew. Chem., Int. Ed. 2006, 45, 6332; 

     (e) Fang, X. L.; Zhao, X. J.; Fang, W. J.; Chen, C.; Zheng, N. F. Nanoscale 2013, DOI: 10.1039/C3NR34006F.

[9] (a) Anisur, R. M.; Shin, J.; Choi, H. H.; Yeo, K. M.; Kang, E. J.; Lee, I. S. J. Mater. Chem. 2010, 20, 10615; 

     (b) Ikeda, S.; Ikoma, Y.; Kobayashi, H.; Harada, T.; Torimoto, T.; Ohtani, B.; Matsumura, M. Chem. Commun. 2007, 3753; 

     (c) Kuo, C. H.; Tang, Y.; Chou, L. Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z. P.; Tsung, C. K. J. Am. Chem. Soc. 2012, 134, 14345.

[10] Qi, J.; Chen, J.; Li, G. D.; Li, S. X.; Gao, Y.; Tang, Z. Y. Energy Environ. Sci. 2012, 5, 8937. 

     (a) Pan, W. T.; Miao, H. Q.; Xu, Y. J.; Navarro, E. C.; Tonra, J. R.; Corcoran, E.; Lahiji, A.; Kussie, P.; Kiselyov, A. S.; Wong, W. C.; Liu, H. Bioorg. Med. Chem. Lett. 2006, 16, 409; 

     (b) Bellina, F.; Calandri, C.; Cauteruccio, S.; Rossi, R. Tetrahedron 2007, 63, 1970.

Outlines

/