Article

Investigation on Non-Covalent Complexes of Cyclodextrins with GGG and GFF Tripeptides in Gas Phase by Mass Spectrometry

  • He Xiaodan ,
  • Xu Chongsheng ,
  • Chu Yanqiu ,
  • Ding Chuanfan
Expand
  • Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200433

Received date: 2012-11-12

  Online published: 2013-01-21

Supported by

Project supported by the National Key Technology R&D Program of China (No. 2009BAK60B03).

Abstract

To investigate the non-covalent interaction between α-, β-, γ-cyclodextrins and peptides, a stoichiometry of α-, β-, γ-cyclodextrins (CD) with GGG (Gly-Gly-Gly) or GFF (Gly-Phe-Phe) was mixed respectively, and then incubated at room temperature for 12 h to reach the equilibrium. In positive mode, the electrospray ionization mass spectrometry (ESI-MS) results indicated that α-, β-, γ-CD with GGG or GFF could form non-covalent complexes, respectively. The binding of cyclodextrins with GGG or GFF was further confirmed by collision induced dissociation (CID) in a tandem mass spectrometer. The formation constants of six complexes (GGG+CD and GFF+CD) were determined by mass spectrometric titration. The results showed the formation constants for both GGG's and GFF's complexes increased according to the order γ-CD, β-CD, α-CD. The formation constants Kst values for GGG complexes with α-CD, β-CD or γ-CD are 2799.96, 2528.73, 1697.11 L·mol-1, respectively. While the formation constants Kst values for GFF complexes with α-CD, β-CD or γ-CD are 2773.94, 2134.03, 1330.68 L·mol-1 respectively. For α-CD, β-CD or γ-CD, the Kst values of GFF complexes containing aromatic group are smaller than those of GGG complexes only containing aliphatic group. The main reason is that in gas phase, with the weakening of hydrophobic force, Van der Waals force plays an important role in the conjugation process of GFF with CD, the coordinating group of GFF is still phenyl group. While in GGG's complexes, the hydrogen bond dominates in the conjugation process. Our convincing results from the formation constants provides a new evidence, indicating that although the conformations for GFF+CD complexes change slightly when the analysts transfer from solution to gas phase, the phenyl group still takes part in coordinating.

Cite this article

He Xiaodan , Xu Chongsheng , Chu Yanqiu , Ding Chuanfan . Investigation on Non-Covalent Complexes of Cyclodextrins with GGG and GFF Tripeptides in Gas Phase by Mass Spectrometry[J]. Acta Chimica Sinica, 2013 , 71(03) : 397 -404 . DOI: 10.6023/A12110904

References

[1] Duan, X. Y.; Luo, G. A.; Chen, Y.; Kong, X. L. J. Am. Soc. Mass Spectrom. 2012, 23, 1126.

[2] Jia, W. T.; Lu, H. J.; Yun, D.; Yang, P. Y. Acta Chim. Sinica 2007, 65, 177. (贾韦韬, 陆豪杰, 贠栋, 杨芃原, 化学学报, 2007, 65, 177.)

[3] Dotsikas, Y.; Loukas, Y. L. J. Am. Soc. Mass Spectrom. 2003, 14, 1123.

[4] Dai, Z. Y.; Chu, Y. Q.; Wu, B.; Wu, L.; Ding, C. F. Acta Pharmcol. Sin. 2008, 29, 759.

[5] Ren, S. F.; Wang, H. Y.; Guo, Y. L. Acta Chim. Sinica 2004, 62, 1959. (任士芳, 王昊阳, 郭寅龙, 化学学报, 2004, 62, 1959.)

[6] Lu, H. J.; Guo, Y. L.; Yang, P. Y. J. Am. Soc. Mass Spectrom. 2004, 15, 1612.

[7] Chen, Y.; Liu, Y. Chin. J. Org. Chem. 2012, 32, 805. (陈湧, 刘育, 有机化学, 2012, 32, 805.)

[8] Yu, Z.; Cui, M.; Yan, C. Y.; Song, F. R.; Liu, Z. Q.; Liu, S. Y.; Zhang, H. X. J. Mass Spectrom. 2010, 45, 444.

[9] Chen, G. S.; Jiang, M. Chem. Soc. Rev. 2011, 40, 2254.

[10] Huang, X.; Liu, X. M.; Luo, Q.; Liu, J. Q.; Shen, J. C. Chem. Soc. Rev. 2011, 40, 1171.

[11] Cao, S. X.; Su, Y. Q.; Yang, X. L.; Chen, X. L.; Zhao, Y. F. Anal. Lett. 2004, 37, 1871.

[12] Irie, T.; Uekama, K. Adv. Drug Delivery Rev. 1999, 36, 101.

[13] Aachmann, F. L.; Otzen, D. E.; Larsen, K. L.; Wimmer, R. Protein Eng. 2003, 16, 905.

[14] Pandey, S.; Kumar, B.; Swamy, V. S. M.; Gupta, A. Int. J. Pharm. Technol. 2010, 2, 281.

[15] Villalonga, R.; Cao, R.; Fragoso, A. Chem. Rev. 2007, 107, 3088.

[16] Matsubara, K.; Ando, Y.; Irie, T.; Uekama, K. Pharm. Res. 1997, 14, 1401.

[17] Nishijo, J.; Tsuchitani, M. J. Pharm. Sci. 2001, 90, 134.

[18] Li, Z. S.; Couzijn, E. P. A.; Zhang, X. Y. J. Phys. Chem. B 2012, 116, 943.

[19] Cooper, A. J. Am. Chem. Soc. 1992, 114, 9208.

[20] Breslow, R.; Dong, S. D. Chem. Rev. 1998, 98, 1997.

[21] Cunniff, J. B.; Vouros, P. J. Am. Soc. Mass Spectrom. 1995, 6, 437.

[22] Ramirez, J.; Ahn, S.; Grigorean, G.; Carroll, J. A.; Lebrilla, C. B. J. Am. Chem. Soc. 2000, 122, 6884.

[23] Yeguas, V.; Altarsha, M.; Monard, G.; Lopez, R.; Ruiz-Lopez, M. F. J. Phys. Chem. A 2011, 115, 11810.

[24] He, X. D.; Jiang, D.; Chen, C.; Chu, Y. Q.; Ding, C. F.; Weng, Z. J.; Li, J. Q. Acta Phys.-Chim. Sin. 2010, 26, 2604. (何小丹, 姜丹, 陈琛, 储艳秋, 丁传凡, 翁志洁, 李建其, 物理化学学报, 2010, 26, 2604.)

[25] Dai, X. H.; Chu, Y. Q.; Jiang, D.; He, X. D.; Fang, X.; Ding, C. F. Chin. J. Anal. Chem. 2010, 38, 1747. (戴新华, 储艳秋, 姜丹, 何小丹, 方向, 丁传凡, 分析化学, 2010, 38, 1747.)

[26] Chu, Y. Q.; Dai, X. H.; Jiang, D.; Fang, X.; Ding, C. F. Rapid Commun. Mass Spectrom. 2010, 24, 2255.

[27] Lü, N.; Zheng, Y. Y.; Li, J. Q.; Pan, T. T.; Chu, Y. Q.; Zhou, M. F.; Ding, C. F. Chin. J. Anal. Chem. 2009, 37, 199. (吕娜, 郑永勇, 李建其, 潘婷婷, 储艳秋, 周鸣飞, 丁传凡, 分析化学, 2009, 37, 199.)

[28] Pan, T. T.; Chu, Y. Q.; Zhou, M. F.; Ding, C. F.; Lü, N.; Weng, Z. J.; Li, J. Q. Acta Chim. Sinica 2008, 66, 2462. (潘婷婷, 储艳秋, 周鸣飞, 丁传凡, 吕娜, 翁志洁, 李建其, 化学学报, 2008, 66, 2462.)

Outlines

/