Article

Preparation and Characterization of Magnetic SiO2/PSt Hollow Composite Microspheres via Miniemulsion Polymerization

  • Yang Beibei ,
  • Yang Jianjun ,
  • Zhang Jianan ,
  • Wu Mingyuan ,
  • Wu Qingyun
Expand
  • School of Chemistry and Chemical Engineering & AnHui Province Key Laboratory of Environment-friendly Polymer Materials, Hefei 230039, Anhui, China

Received date: 2012-11-29

  Online published: 2013-01-21

Supported by

Project supported by the National Natural Science Foundation of China (No. 51173001), the Anhui Provincial Natural Science Foundation (No. 11040606M59) and Graduate Student Innovation Project Foundation of Anhui University.

Abstract

In this work, a facile method was presented for the preparation of magnetic SiO2/PSt hollow composite microspheres via double in situ miniemulsion polymerization. Our approach was based on the in situ miniemulsion polymerization of organic monomers and in situ formation of silica from precursor (tetraethoxysilane, TEOS) within miniemulsion monomers droplets simultaneously. Firstly, monodisperse hydrophobic magnetic nanoparticles were synthesized by coprecipitation method as the literature reported. Then the as-prepared magnetic nanoparticles (MNP) were added in the mixtures of styrene (St), divinyl benzene (DVB), TEOS, and γ-methacryloxypropyl trimethoxy silane (MPS) to be used as the oil phase. Magnetic nanoparticles were restricted in miniemulsion microreactor droplets via the miniemulsification process by sodium dodecyl sulfate (SDS) aqueous solution as a water phase. After the monomers polymerized, TEOS phase is compressed and restricted as a liquid core due to phase separation between TEOS and the growing polystyrene. When the ammonia was added, silica was in situ formed by the hydrolysis-condensation of TEOS under basic conditions. Because the volume of TEOS decreased dramatically, the original TEOS phase shrank into silica and led to the formation of hollow structure. Hollow composite microspheres were characterized by Fourier-transformed infrared spectrum (FT-IR), transmission electron microscopy (TEM), thermogravimetry and differential analyses (TGA/DSC) and vibrating sample magnetometer (VSM), respectively. The results showed that in the absence of magnetic nanoparticles SiO2/PSt hollow composite microspheres with particle sizes in range of 300~600 nm were prepared successfully. With the addition of hydrophobic magnetic nanoparticles, the magnetic SiO2/PSt composite microspheres were fabricated conveniently with magnetic nanoparticles embedded in the polymeric shell, which remained the same hollow structure as the SiO2/PSt hollow composite microspheres. The inner void size of composite microspheres could be easily controlled by using varied TEOS contents in the miniemulsion formulation. The entrapment efficiency of magnetic nanoparticles in SiO2/PSt composite microspheres reached up to 86%. The magnetic SiO2/PSt hollow composite microspheres were superparamagnetic and their saturation magnetizations were 14.7 emu/g. The magnetic hollow composite microspheres may provide a very promising vehicle for drug delivery, catalysis, and photoelectric materials.

Cite this article

Yang Beibei , Yang Jianjun , Zhang Jianan , Wu Mingyuan , Wu Qingyun . Preparation and Characterization of Magnetic SiO2/PSt Hollow Composite Microspheres via Miniemulsion Polymerization[J]. Acta Chimica Sinica, 2013 , 71(03) : 392 -396 . DOI: 10.6023/A12110985

References

[1] Li, X. H.; Zhang, D. H.; Chen, J. S. J. Am. Chem. Soc. 2006, 128, 8382.

[2] (a) Cao, S. W.; Zhu, Y. J.; Ma, M. Y.; Li, L.; Zhang, L. J. Phys. Chem. C 2008, 112, 1851;

     (b) Shin, J.; Anisur, R.; Ko, M. Angew. Chem., Int. Ed. 2009, 48, 321; 

     (c) Hu, Y.; Ding, Y.; Ding, D.; Sun, M. J.; Zhang, L. Y.; Jiang, X. Q.; Yang, C. Z. Biomacromolecules 2007, 8, 1069; 

     (d) Cao, S. Y.; Zhu, Y. J. J. Phys. Chem. C 2008, 112, 6253; 

     (e) Cong, Y. H.; Wang, G. L.; Xiong, M. H.; Huang, Y. J.; Hong, Z. F.; Wang, D. L.; Li, J. J.; Li, L. B. Langmuir 2008, 24, 6624.

[3] Caruso, F.; Caruso, R. A.; Möhwald, H. Mohwald. Sci. 1998, 282, 1111.

[4] Jia, H.; Jing, J.; Zhao, X.; Wang, W. G.; Wang, D. M.; Liu, C. W.; Zhou, H. W. Mater. Lett. 2012, 68, 86.

[5] Zhang, M. Y.; Liu, L. Y.; Ren, M. W.; Zhao, C. W.; Yang, W. T.Acta Polym. Sinica 2011, (5), 502. (张雅铭, 刘莲英, 任明伟, 赵长伟, 杨万泰, 高分子学报, 2011, (5), 502.)

[6] Ding, Y.; Hu, Y.; Zhang, L. Y.; Chen, Y.; Jiang, X. Q. Biomacromolecules 2006, 7, 1766.

[7] An, K.; Hyeon, T. Nano Today 2009, 4, 359.

[8] (a) Madani, M.; Sharifi-Sanjani, N.; Faridi-Majidi, R. Polym. Sci. Ser. A+. 2011, 53, 143; 

     (b) Zhang, J. A.; Liu, N. N.; Wang, M. Z.; Ge, X. W.; Wu, M. Y.; Yang, J. J.; Wu, Q. Y.; Jin, Z. L. J. Polym. Sci. Polym. Chem. 2010, 48, 3128; 

     (c) Landfester, K. Angew. Chem., Int. Ed. 2009, 48, 4488.

[9] Qiao, X. G.; Chen, M.; Zhou, J.; Wu, L. M. J. Polym. Sci. Polym. Chem. 2007, 45, 1028.

[10] Mahdavian, A. R.; Ashjari, M.; Mobarakeh, H. S. J. Appl. Polym. Sci. 2008, 110, 1242.

[11] Zhang, J. A.; Ge, X. W.; Wang, M. Z.; Wu, M. Y.; Yang, J. J.; Wu, Q. Y. Polym. Chem. 2012, 3, 2011.

[12] Zhang, J. A.; Yang, J. J.; Wu, Q. Y.; Wu, M. Y.; Liu, N. N.; Jin, Z. L.; Wang, Y. Macromolecules 2010, 43, 1188.

[13] Wang, Y. H.; Zhang, C. L.; Tang, C.; Li, J.; Shen, K.; Liu, J. G.; Qu, X. Z.; Li, J. L.; Wang, Q.; Yang, Z. Z. Macromolecules 2011, 44, 3787.

[14] Lu, Z. Y.; Qin, Y. Q.; Fang, J. Y.; Sun, J.; Li, J.; Liu, F. Q.; Yang, W. S. Nano Technol. 2008, 19, 1

[15] Zhang, H. P.; Zhang, Q. Y.; Zhang, B. L.; Fan, X. L.; Li, X. J. Acta Chim. Sinica 2012, 70, 345. (张和鹏, 张秋禹, 张宝亮, 范新龙, 厉向杰, 化学学报, 2012, 70, 345.)

[16] Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harburn, J. J.; Pierre, T. G.; Saunders, M. Chem. Mater. 2003, 15, 1367.

[17] Hong, R. Y.; Feng, B.; Liu, G.; Wang, S.; Li, H. Z.; Ding, J. M.; Zheng, Y.; Wei, D. G. J. Alloys Compd. 2009, 476, 612.

[18] Chen, K. M.; Zhu, Y.; Zhang, Y. F.; Li, L.; Lu, Y.; Guo, X. H. Macromolecules 2011, 44, 632.

Outlines

/