Recent Progress in pH-Sensitive Gene Carriers
Received date: 2012-11-28
Online published: 2013-01-31
Supported by
Project supported by the National Natural Science Foundation of China (No. 21002088) and Ningbo Natural Science Foundation (No. 2012A610177).
Gene therapy shows promise as a potentially revolutionizing strategy for treatment of many genetically-related diseases, such as cancer. However, the lack of safe and effective gene delivery carriers (or vectors) has become a bottleneck in its basic research and clinical application. Generally, gene delivery carriers can be divided into viral and non-viral ones. Although non-viral gene delivery carriers can offer some advantages such as safety and facile fabrication, they don't possess the same high gene delivery efficiency as viral gene delivery carriers do, due to lack of functionality to overcome many intracellular gene-delivery obstacles. Currently, many kinds of "smart" non-viral gene-delivery carriers have been developed in order to realize efficient gene-delivery, since such carriers can undergo physical or chemical reactions in response to changes in pH, oxidative state, or enzymatic activity. As these stimuli or cues may be specific to a biological site, tissue, or condition, it may facilitate the release of the nucleic acid cargo at the desired site in an efficient manner. Among all these stimuli-responsive carriers, pH-responsive one has attracted major attention and great impetus has been directed towards utilizing the subtle yet significant change in pH value within the cellular compartments. In this review, we give an overview of pH-sensitive lipids and polymers which have been designed and developed in recent years, with focus on their structural features and consequent functional attributes to achieve efficient transfection. The underlying modes of actions relating to structure and differential pH environment have also been discussed. It is worthy to note that despite many pH-sensitive carriers have shown success in vitro and a few in vivo, none have entered clinical phase for their transfection activity is still insufficient. To develop more efficient gene delivery carriers, the exact mechanisms of how these pH-sensitive carriers overcome each intracellular obstacle, as well as some concepts such as "proton sponge", have to be maken more clear or verified further.
Shen Yin , Hu Guixiang , Zhang Huaxing , Qi Lili , Luo Chengcai . Recent Progress in pH-Sensitive Gene Carriers[J]. Acta Chimica Sinica, 2013 , 71(03) : 323 -333 . DOI: 10.6023/A12110974
[1] Anderson, W. F. Nature 1998, 392, 25.
[2] Huang, J. Z.; Gu, H. G.; Xia, H. S. Chin. J. Bases Chin. General Surg. 2003, 10, 83. (黄建钊, 顾红光, 夏慧生, 中国普外基础与临床杂志, 2003, 10, 83.)
[3] Cui, L.; Li, Y.; Hou, X. D.; Gong, W. J.; Xu, Y. H.; Cao, A. M. Acta Chim. Sinica 2007, 65, 2181. (崔亮, 李洋, 侯小东, 宫文娟, 徐宇虹, 曹阿民, 化学学报, 2007, 65, 2181.)
[4] (a) Matthew, G. S.; Steven, L. C. J. Med. Chem. 2010, 53, 7887; (b) Wang, J.; Lu Z.; Wientjes, M. G.; Au, J. L. AAPS J. 2010, 12, 492.
[5] (a) Grosse, S.; Aron, Y.; Thévenot, G.; François, D.; Monsigny, M.; Fajac, I. J. Gene Med. 2005, 7, 1275; (b) Bishop, N. E. Rev. Med. Virol. 1997, 7, 199; (c) Pelkmans, L.; Helenius, A. Traffic 2002, 3, 311; (d) Conner, S. D.; Schmid, S. L. Nature 2003, 422, 37; (e) Hansen, C. G.; Nichols, B. J. J. Cell Sci. 2009, 122, 1713.
[6] Midoux, P.; Breuzard, G..; Gomez, J. P.; Pichon, C. P. Curr. Gene Ther. 2008, 8, 335.
[7] (a) Pack, D. W. J. Controlled Release 2009, 136, 54; (b) Rejman, J.; Bragonzi, A.; Conese, M. Mol. Ther. 2005, 12, 468; (c) van der Aa, M. A.; Huth, U. S.; Häfele, S. Y.; Schubert, R.; Oosting, R. S.; Mastrobattista, E.; Hennink, W. E.; Peschka-Süss, R.; Koning, G. A.; Crommelin, D. J. Pharm. Res. 2007, 24, 1590.
[8] Ganta, S.; Devalapally, H.; Shahiwala, A.; Amiji, M. J. Controlled Release 2008, 126, 187.
[9] Kirpotin, D.; Hong, K.; Mullah, N.; Papahadjopoulos, D.; Zalipsky, S. FEBS Lett. 1996, 388, 115.
[10] Guo, X.; Szoka, F. C. Jr. Acc. Chem. Res. 2003, 36, 335.
[11] Dewhirst, M. W.; Vujaskovic, Z.; Jones, E.; Thrall, D. Int. J. Hyperthermia 2005, 21, 779.
[12] Kono, K.; Yoshino, K.; Takagishi, T. J. Controlled Release 2002, 80, 321.
[13] (a) Engin, K.; Leeper, D. B.; Cater, J. R. Thistlethwaite, A. J.; Tupchong, L.; Thistlethwaite, A. J.; Tupchong, L.; McFarlane, J. D. Int. J. Hyperthermia 1995, 11, 211; (b) Mellman, I.; Fuchs, R.; Helenius, A. Annu. Rev. Biochem. 1986, 55, 663.
[14] Zhang, X. X; McIntosh, T. J.; Grinstaff, M. W. Biochimie 2012, 94, 42.
[15] Schmid, S. L. Subcell. Biochem. 1993, 19, 1.
[16] Yatvin, M. B.; Kreutz, W.; Horwitz, B. A.; Shinitzky, M. Science 1980, 210, 1253.
[17] Chu, C. J.; Szoka, F. C. J. Liposome Res. 1994, 4, 361.
[18] (a) Legendre, J. Y.; Szoka, F. C. Pharm. Res. 1992, 9, 1235; (b) Hafez, I. M.; Cullis, P. R. Biochim. Biophys. Acta Biomembr. 2000, 1463, 107.
[19] Drummond, D. C.; Meyer, O.; Hong, K.; Kirpotin, D. B.; Papahadjopoulos, D. Pharm. Rev. 1999, 51, 691.
[20] Júnior, A. D.; Mota, L. G.; Nunan, E. A.; Wainstein, A. J.; Wainstein, A. P.; Leal, A. S.; Cardoso, V. N.; De Oliveira, M. C. Life Sci. 2007, 80, 659.
[21] Silva, S. M. L.; Coelho, L. N.; Malachias, Â.; Oliveira, M. C. Chem. Phys. Lett. 2011, 6, 66.
[22] Cordes, E. H.; Bull, H. G. Chem. Rev. 1974, 74, 581.
[23] Boomer, J. A.; Thompson, D. H.; Sullivan, S. M. Pharm. Res. 2002, 19, 1292.
[24] Boomer, J. A.; Qualls, M. M.; Inerowicz, H. D.; Haynes, R. H.; Patri, V. S.; Kim, J. M.; Thompson, D. H. Bioconjugate Chem. 2009, 20, 47.
[25] Song, J.; Hollingsworth, R. I. J. Am. Chem. Soc. 1999, 121, 1851.
[26] Zhu, J.; Munn, R. J.; Nantz, M. H. J. Am. Chem. Soc. 2000, 122, 2645.
[27] Chen, H. G.; Zhang, H. Z.; McCallum, C. M.; Szoka, F. C.; Guo, X. J. Med. Chem. 2007, 50, 4269.
[28] Chen, H. G.; Zhang, H. Z. Thor, D.; Rahimian, R.; Guo, X. Eur. J. Med. Chem. 2012 52, 159.
[29] Aissaoui, A.; Martin, B.; Kan, E.; Oudrhiri, N.; Hauchecorne, M.; Vigneron, J. P.; Lehn, J. M.; Lehn, P. J. Med. Chem. 2004, 47, 5210.
[30] Liang, E.; Hughes, J. A. J. Membr. Biol. 1998, 166, 37.
[31] Liang, E.; Hughes, J. Biochim. Biophys. Acta Biomembr. 1998, 1369, 39.
[32] Asokan, A.; Cho, M. J. J. Pharm. Sci. 2002, 91, 903.
[33] Budker, V.; Gurevich, V.; Hagstrom, J. E.; Bortzov, F.; Wolff, J. A. Nat. Biotechnol. 1996, 14, 760.
[34] (a) Kumar, V. V.; Pichon, C.; Refregiers, M.; Guerin, B.; Midoux, P.; Chaudhuri, A. Gene Ther. 2003, 10, 1206; (b) Singh, R. S.; Gonçalves, C.; Sandrin, P.; Pichon, C.; Midoux, P.; Chaudhuri, A. Chem. Biol. 2004, 11, 713; (c) Karmali, P. P.; Kumar, V. V.; Chaudhuri, A. J. Med. Chem. 2004, 47, 2123; (d) Karmali, P. P.; Majeti, B. K.; Sreedhar, B.; Chaudhuri, A. Bioconjugate Chem. 2006, 17, 159.
[35] Mével, M.; Neveu, C.; Gonçalves, C.; Yaouanc, J. J.; Pichon, C.; Jaffrès, P. A.; Midoux, P. Chem. Commun. 2008, (27), 3124.
[36] (a) Thomas, M.; Klibanov, A. M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 14640; (b) Akinc, A.; Thomas, M.; Klibanov, A. M.; Langer, R. J. Gene Med. 2005, 7, 657; (c) Sonawane, N. D.; Szoka, F. C. Jr.; Verkman, A. S. J. Biol. Chem. 2003, 278, 44826.
[37] Won, Y. Y. Sharma, R.; Konieczny, S. F. J. Controlled Release 2009, 139, 88.
[38] Yue, Y. N.; Wu, C. Biomater. Sci. 2013, 1, 152
[39] Park, I. K.; Singha, K.; Arote, R. B. Choi, Y. J.; Kim, W. J.; Cho, C. S. Macromol. Rapid Commun. 2010, 31, 1122.
[40] Walker, G. F.; Fella, C.; Pelisek, J.; Fahrmeir, J.; Boeckle, S.; Ogris, M.; Wagner, E. Mol. Ther. 2005, 11, 418.
[41] Fella, C.; Walker, G. F.; Ogris, M.; Wagner, E. Eur. J. Pharm. Sci. 2008, 34, 309.
[42] Knorr, V.; Allmendinger, L.; Walker, G. F.; Paintner, F. F.; Wagner, E. Bioconjugate Chem. 2007, 18, 1218.
[43] Knorr, V.; Russ, V.; Allmendinger, L.; Ogris, M.; Wagne, E. Bioconjugate Chem. 2008, 19, 1625.
[44] Lin, Y. L.; Jiang, G. H.; Birrell, K. L.; El-Sayed, M. E. H. Biomaterials 2010, 31, 7150.
[45] (a) Shim, M. S.; Kwon, Y. J. Bioconjugate Chem. 2009, 20, 488; (b) Shim, M. S.; Kwon, Y. J. Biomaterials 2011, 32, 4009.
[46] Midoux, P.; Monsigny, M. Bioconjugate Chem. 1999, 10, 406.
[47] Boylan, N. J.; Kim, A. J.; Suk, J. S.; Adstamongkonkul, P. Biomaterials 2012, 33, 2361.
[48] (a) Benns, J. M.; Choi, J. S.; Mahato, R. I.; Park, J. S.; Kim, S. W. Bioconjugate Chem. 2000, 11, 637; (b) Asayama, S.; Hamaya, A.; Sekine, T.; Kawakami, H.; Nagaoka, S. Nucleic Acids Symp. Ser. 2004, 48, 229.
[49] (a) Asayama, S.; Kato, H.; Kawakami, H.; Nagaoka, S. Adv. Technol. 2007, 18, 329; (b) Asayama, S.; Sudo, M.; Nagaoka, S.; Kawakami, H. Mol. Pharm. 2008, 5, 898.
[50] Wang, X. L.; Jensen, R.; Lu, Z. R. J. Controlled Release 2007, 31, 250.
[51] Sasaki, K.; Kogure, K.; Chaki, S.; Nakamura, Y.; Moriguchi, R.; Hamada, H.; Danev, R.; Nagayama, K.; Futaki, S.; Harashima, H. Anal. Bioanal. Chem. 2008, 391, 2717.
[52] Hatakeyama, H.; Ito, E.; Akita, H.; Oishi, M.; Nagasaki, Y.; Futaki, S.; Harashima, H. J. Controlled Release 2009, 139, 127.
[53] Khalil, I. A.; Hayashi, Y.; Mizuno, R.; Harashima, H. J. Controlled Release 2011, 156, 374.
[54] Shaheen, S. M.; Akita, H.; Nakamura, T.; Takayama, S.; Futaki, S.; Yamashita, A.; Katoono, R.; Yui, N.; Harashima, H. Biomaterials 2011, 32, 6342.
[55] Choi, S. W.; Lee, S. H.; Mok, H.; Park, T. G. Biotechnol. Prog. 2010, 26, 57.
[56] Yuba, E.; Kojima, C.; Sakaguchi, N.; Harada, A.; Koiwai, K.; Kono, K. J. Controlled Release 2008, 130, 77.
[57] Felber, A. E.; Bastien, C.; Elsabahy M.; Deleavey, G. F.; Damha, M. J.; Leroux, J. C. J. Controlled Release 2011, 152, 159.
[58] Dehousse, V.; Garbacki, N.; Colige, A.; Evrard, B. Biomaterials 2010, 31, 1839.
[59] Nouri, A.; Castro, R.; Kairys, V.; Santos, J. L.; Rodrigues, J.; Li, Y.; Tomás, H. J. Mater Sci.: Mater Med. 2012, 23, 2967.
[60] Convertine, A. J.; Benoit, D. S. W.; Duvall, C. L.; Hoffman, A. S.; Stayton, P. S. J. Controlled Release 2009, 133, 221.
[61] Stayton, P. S.; El-Sayed, M. E.; Murthy, N.; Bulmus, V.; Lackey, C.; Cheung, C.; Hoffman, A. S. Orthod. Craniofac. Res. 2005, 8, 219.
[62] Thomas, J. L.; Barton, S. W.; Tirrell, D. A. Biophys. J. 1994, 67, 1101.
[63] Du, J.; Tang, Y.; Lewis, A. L.; Armes, S. P. J. Am. Chem. Soc. 2005, 127, 17982.
[64] Lomas, H.; Du, J. Z.; Canton, I.; Madsen, J.; Warren, N.; Armes, S. P.; Lewis, A. L.; Battaglia, G. Macromol. Biosci. 2010, 10, 513.
[65] Mignet, N.; Richard, C.; Seguin, J.; Largeau, C.; Bessodes, M.; Scherman, D. Int. J. Pharm. 2008, 361, 194.
[66] Kim, Y. K.; Jiang, H. L.; Choi, Y. J.; Park, I. K.; Cho, M. H.; Cho, C. S. Adv. Polym. Sci. 2011, 243, 1.
[67] Chang, K. L.; Higuchi, Y.; Kawakami, S.; Yamashita, F.; Hashida, M. Bioconjugate Chem. 2010, 21, 1087.
[68] Ghosn, B.; Singh, A.; Li, M.; Vlassov, A. V.; Burnett, C.; Puri, N.; Roy, K. Oligonucleotides 2010, 20, 163.
[69] Gao, J. Q.; Zhao, Q. Q.; Lv, T. F.; Shuai, W. P.; Zhou, J.; Tang, G. P.; Liang, W. Q.; Tabata, Y.; Hu, Y. L. Int. J. Pharm. 2010, 387, 286.
[70] Jere, D.; Jiang, H. L.; Kim, Y. K.; Arote, R.; Choi, Y. J.; Yun, C. H.; Cho, M. H.; Cho, C. S. Int. J. Pharm. 2009, 378, 194.
/
〈 |
|
〉 |