Article

Analysis of the Sulfur Cathode Capacity Fading Mechanism and Review of the Latest Development for Li-S Battery

  • Diao Yan ,
  • Xie Kai ,
  • Hong Xiaobin ,
  • Xiong Shizhao
Expand
  • National University of Defense Technology, College of Aerospace Science and Engineering, Changsha 410073

Received date: 2012-12-10

  Online published: 2013-02-01

Abstract

Because of automotive industry sustainable development, the demand for higher energy density rechargeable batteries make the lithium-sulfur (Li-S) batteries become one of the most attractive candidates. The Li-S systems have a theoretical specific energy of 2600 Wh/kg while the theoretical capacity of sulfur is 1680 mAh/g. Sulfur is abundant, low cost and environment friendly. Although the rechargeable Li-S batteries possess more advantages over the conventional lithium ion batteries, the practical use faces with a variety of problems such as low specific capacity and short cycle life. Based on the fundamental electrochemical process of the sulfur cathode, the capacity fading mechanism of the sulfur cathode is analyzed in details. Combining with the works of our research team, the factors leading to the cathode property fading mechanism are summarized. Firstly, the main issue is that sulfur is both ionically and electrically insulating. And the insoluble low-order lithium polysulfide discharge products are also expected to be electronic insulators. So the cathode structure must contain electronic conductors (carbon or metal powder) which will decrease the energy density. Secondly, researchers impute the capacity fading into the residual Li2S2 and Li2S in sulfur cathode even at 100% depth of charge. The formation of Li2S2 and Li2S increasing with cycling results in active material loss. And the deposition of irreversible Li2S or Li2S2 at cracked surfaces of carbon particles causes cathode structural failure. Thirdly, high ordered lithium polysulfide (Li2Sn, 3≤n≤8) is soluble in electrolyte, but low ordered lithium polysulfide (Li2S2 and Li2S) is insoluble. Thus chemical precipitation/dissolution reactions occur during the electrochemical process resulting in active material transition between liquid phase and solid phase. But it is difficult for the high ordered lithium polysulfide to transfer completely from liquid phase to solid phase at the end of cycles, so that will lead to the active material loss. Fourthly, another serious problem is the irreversible oxidation of cathode active material. The formation of LixSOy species increasing with cycling indicates an important capacity fading mechanism of Li-S battery. In this paper, the main research directions and the latest development to enhance the performance of sulfur cathode are reviewed from the aspects of carbon conductive structure, polymer coatings and metal oxides additives, and also the problems in each research directions are analyzed. Finally, the further development of Li-S battery is discussed.

Cite this article

Diao Yan , Xie Kai , Hong Xiaobin , Xiong Shizhao . Analysis of the Sulfur Cathode Capacity Fading Mechanism and Review of the Latest Development for Li-S Battery[J]. Acta Chimica Sinica, 2013 , 71(04) : 508 -518 . DOI: 10.6023/A12121024

References

[1] Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Nat. Mater. 2012, 11, 19.

[2] Ellis, B. L.; Lee, K. T.; Naza, L. F. Chem. Mater. 2010, 22, 691.

[3] Ji, X.; Nazar, L. F. J. Mater. Chem. 2010, 20, 9821.

[4] Evers, S.; Nazar, L. F. Acc. Chem. Res. 2012, DOI: 10.1021/ ar3001348.

[5] Diao, Y.; Xie, K.; Xiong, S.; Hong, X. J. Electrochem. Soc. 2012, 159, A421.

[6] Kumaresan, K.; Mikhaylik, Y.; White, R. E. J. Electrochem. Soc. 2008, 155, A576.

[7] Mikhaylik, Y. V.; Akridge, J. R. J. Electrochem. Soc. 2004, 151, A1969.

[8] Kolosnitsyn, V. S.; Karaseva, E. V. Russ. J. Electrochem. 2008, 44, 506.

[9] Cheon, S. E.; Ko, K. S.; Cho, J. H.; Kim, S. W.; Chin, E. Y. J. Electrochem. Soc. 2003, 150, A796.

[10] Akridge, J. R.; Mikhaylik, Y. V.; White, N. Solid State Ionics 2004, 175, 243.

[11] Hamann, C. H.; Hamnett, A.; Vielstich, W. Electrochemistry, 2nd ed., Chemical Industry Press, Beijing, 2009. (卡尔·哈曼, 活尔夫·菲尔施蒂希, 安德鲁·哈姆内特, 电化学, 第二版, 化学工业出版社, 北京, 2009.)

[12] He, X.; Ren, J.; Wang, L.; Pu, W.; Jiang, C.; Wan, C. J. Power Sources 2009, 190, 154.

[13] Cheon, S. E.; Ko, K. S.; Cho, J. H.; Kim, S. W.; Chin, E. Y. J. Electrochem. Soc. 2003, 150, A800.

[14] Cheon, S. E.; Choi, S. S.; Han, J. S.; Choi, Y. S.; Jung, B. H.; Lima, H. S. J. Electrochem. Soc. 2004, 151, A2067.

[15] Elazari, R.; Salitra, G.; Talyosef, Y.; Grinblat, J.; Kelley, C. S.; Xiao, A.; Affinito, J.; Aurbach, D. J. Electrochem. Soc. 2010, 157, A1131.

[16] Diao, Y.; Xie, K.; Xiong, S.; Hong, X. J. Electrochem. Soc. 2012, 159, A1816.

[17] Barchasz, C.; Leprêtre, J. C.; Alloin, F.; Patoux, S. J. Power Sources 2011.

[18] Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Anal. Chem. 2011, 84, 3973.

[19] Han, S. C.; Song, M. S.; Lee, H.; Kim, H. S.; Ahn, H. J.; Lee, J. Y. J. Electrochem. Soc. 2003, 150, A889.

[20] Yuan, L.; Yuan, H.; Qiu, X.; Chen, L.; Zhu, W. J. Power Sources 2009, 189, 1141.

[21] Guo, J.; Xu, Y.; Wang, C. Nano Lett. 2011, 11, 4288.

[22] Wei, W.; Wang, J.; Zhou, L.; Yang, J.; Schumann, B.; NuLi, Y. Electrochem. Commun. 2011, 13, 399.

[23] Ahn, W.; Kim, K. B.; Jung, K. N.; Shin, K. H.; Jin, C. S. J. Power Sources 2012, 202, 394.

[24] Chen, J. J.; Zhang, Q.; Shi, Y. N.; Qin, L. L.; Cao, Y.; Zheng, M. S.; Dong, Q. F. Phys. Chem. Chem. Phys. 2012, 14, 5376.

[25] Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J. Chem. Commun. 2012, 48, 4097.

[26] Su, Y. S.; Fu, Y.; Manthiram, A. Phys. Chem. Chem. Phys. 2012, 14, 14495.

[27] Zhou, G. M.; Wang, D. W.; Li, F.; Hou, P. X.; Yin, L. C.; Liu, C.; Lu, G. Q.; Gentle, I. R.; Cheng, H. M. Energy Environ. Sci. 2012, 5, 8901.

[28] Zheng, W.; Liu, Y. W.; Hu, X. G.; Zhang, C. F. Electrochim. Acta 2006, 51, 1330.

[29] Choi, Y. J.; Kim, K. W.; Ahn, H. J.; Ahn, J. H. J. Alloys Compd. 2008, 449, 313.

[30] Ji, L.; Rao, M.; Aloni, S.; Wang, L.; Cairns, E. J.; Zhang, Y. Energy Environ. Sci. 2011, 4, 5053.

[31] Zheng, G.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Nano Lett. 2011, 11, 4462.

[32] Ji, X.; Lee, K. T.; Nazar, L. F. Nat. Mater. 2009, 8, 500.

[33] Wang, J.; Chew, S. Y.; Zhao, Z. W.; Ashraf, S.; Wexler, D.; Chen, J.; Ng, S. H.; Chou, S. L.; Liu, H. K. Carbon 2008, 46, 229.

[34] Lai, C.; Gao, X. P.; Zhang, B.; Yan, T. Y.; Zhou, Z. J. Phys. Chem. C 2009, 113, 4712.

[35] Chen, S. R.; Zhai, Y. P.; Xu, G. L.; Jiang, Y. X.; Zhao, D. Y.; Li, J. T.; Huang, L.; Sun, S. G. Electrochim. Acta 2011, 56, 9549.

[36] Li, X.; Cao, Y.; Qi, W.; Saraf, L. V.; Xiao, J.; Nie, Z.; Mietek, J.; Zhang, J. G.; Schwenzer, B.; Liu, J. J. Mater. Chem. 2011, 21, 16603.

[37] Liang, X.; Wen, Z.; Liu, Y.; Zhang, H.; Huang, L.; Jin, J. J. Power Sources 2011, 196, 3655.

[38] Schuster, J.; He, G.; Mandlmeier, B.; Yim, T.; Lee, K. T.; Bein, T.; Nazar, L. F. Angew. Chem. 2012, 124, 3651.

[39] Kim, J.; Lee, D. J.; Jung, H. G.; Sun, Y.-K.; Hassoun, J.; Scrosati, B. Adv. Funct. Mater. 2012, DOI: 10.1002/adfm.201200689.

[40] He, G.; Ji, X.; Nazar, L. Energy Environ. Sci. 2011, 4, 2878.

[41] Jayaprakash, N.; Shen, J.; Moganty, S. S.; Corona, A.; Archer, L. A. Angew. Chem. 2011, 123, 6026.

[42] Zhang, C.; Wu, H. B.; Yuan, C.; Guo, Z.; Lou, X. W. Angew. Chem. 2012, 124, 9730.

[43] Liang, C.; Dudney, N. J.; Howe, J. Y. Chem. Mater. 2009, 21, 4724.

[44] Zhang, B.; Qin, X.; Li, G. R.; Gao, X. P. Energy Environ. Sci. 2010, 3, 1531.

[45] Cao, Y.; Li, X.; Aksay, I. A.; Lemmon, J.; Nie, Z.; Yang, Z.; Liu, J. Phys. Chem. Chem. Phys. 2011, 13, 7660.

[46] Ji, L.; Rao, M.; Zheng, H.; Zhang, L.; Li, Y.; Duan, W.; Guo, J.; Cairns, E. J.; Zhang, Y. J. Am. Chem. Soc. 2011, 133, 18522.

[47] Li, S.; Xie, M.; Liu, J.; Wang, H.; Yan, H. Electrochem. Solid-State Lett. 2011, 14, A105.

[48] Wang, H.; Yang, Y.; Liang, Y.; Robinson, J. T.; Li, Y.; Jackson, A.; Cui, Y.; Dai, H. Nano Lett. 2011, 11, 2644.

[49] Wang, J. Z.; Lu, L.; Choucair, M.; Stride, J. A.; Xu, X.; Liu, H. K. J. Power Sources 2011, 196, 7030.

[50] Evers, S.; Nazar, L. F. Chem. Commun. 2012, 48, 1233.

[51] Li, N.; Zheng, M.; Lu, H.; Hu, Z.; Shen, C.; Chang, X.; Ji, G.; Cao, J.; Shi, Y. Chem. Commun. 2012, 48, 4016.

[52] Park, M. S.; Yu, J. S.; Kim, K. J.; Jeong, G.; Kim, J. H.; Jo, Y. N.; Hwang, U.; Kang, S.; Woo, T.; Kim, Y. J. Phys. Chem. Chem. Phys. 2012, 14, 6796.

[53] Sun, H.; Xu, G. L.; Xu, Y. F.; Sun, S. G.; Zhang, X.; Qiu, Y.; Yang, S. Nano Res. 2012, 10, 726.

[54] Wang, D. W.; Zhou, G.; Li, F.; Wu, K. H.; Lu, G. Q.; Cheng, H. M.; Gentle, I. R. Phys. Chem. Chem. Phys. 2012, 14, 8703.

[55] Wang, Y. X.; Huang, L.; Sun, L. C.; Xie, S. Y.; Xu, G. L.; Chen, S. R.; Xu, Y. F.; Li, J. T.; Chou, S. L.; Dou, S. X.; Sun, S. G. J. Mater. Chem. 2012, 22, 4744.

[56] Wei, Z. K.; Chen, J. J.; Qin, L. L.; Nemage, A. W.; Zheng, M. S.; Dong, Q. F. J. Electrochem. Soc. 2012, 159, A1236.

[57] Yan, Y.; Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Chem. Commun. 2012, 48, 10663.

[58] Zhang, F. F.; Zhang, X. B.; Dong, Y. H.; Wang, L. M. J. Mater. Chem. 2012, 22, 11452.

[59] Zhang, L.; Ji, L.; Glans, P. A.; Zhang, Y.; Zhu, J.; Guo, J. Phys. Chem. Chem. Phys. 2012, 14, 13670.

[60] Huang, J. Q.; Liu, X. F.; Zhang, Q.; Chen, C. M.; Zhao, M. Q.; Zhang, S. M.; Zhu, W.; Qian, W. Z.; Wei, F. Nano Energy 2012, DOI: 10.1016/j.nanoen.2012.10.003.

[61] Elazari, R.; Salitra, G.; Garsuch, A.; Panchenko, A.; Aurbach, D. Adv. Mater. 2011, 23, 5641.

[62] Wang, J.; Yang, J.; Xie, J.; Xu, N. Adv. Mater. 2002, 14, 962.

[63] Wang, J.; Yang, J.; Wan, C.; Du, K.; Xie, J.; Xu, N. Adv. Funct. Mater. 2003, 13, 487.

[64] Yu, X.; Xie, J.; Li, Y.; Huang, H.; Lai, C.; Wang, K. J. Power Sources 2005, 146, 335.

[65] Yin, L.; Wang, J.; Yang, J.; Nuli, Y. J. Mater. Chem. 2011, 21, 6807.

[66] Yin, L.; Wang, J.; Lin, F.; Yang, J.; Nuli, Y. Energy Environ. Sci. 2012, 5, 6966.

[67] Yin, L.; Wang, J.; Yu, X.; Monroe, C. W.; NuLi, Y.; Yang, J. Chem. Commun. 2012, 48, 7868.

[68] Wang, J.; Chen, J.; Konstantinov, K.; Zhao, L.; Ng, S. H.; Wang, G. X.; Guo, Z. P.; Liu, H. K. Electrochim. Acta 2006, 51, 4634.

[69] Sun, M.; Zhang, S.; Jiang, T.; Zhang, L.; Yu, J. Electrochem. Commun. 2008, 10, 1819.

[70] Qiu, L.; Zhang, S.; Zhang, L.; Sun, M.; Wang, W. Electrochim. Acta 2010, 55, 4632.

[71] Liang, X.; Liu, Y.; Wen, Z.; Huang, L.; Wang, X.; Zhang, H. J. Power Sources 2011, 196, 6951.

[72] Liang, X.; Wen, Z.; Liu, Y.; Wang, X.; Zhang, H.; Wu, M.; Huang, L. Solid State Ionics 2011, 192, 347.

[73] Liang, X.; Wen, Z.; Liu, Y.; Zhang, H.; Jin, J.; Wu, M.; Wu, X. J. Power Sources 2012, 206, 409.

[74] Fu, Y.; Manthiram, A. RSC Adv. 2012, 2, 5927.

[75] Fu, Y.; Manthiram, A. Chem. Mater. 2012, 24, 3081.

[76] Fu, Y.; Su, Y. S.; Manthiram, A. J. Electrochem. Soc. 2012, 159, A1420.

[77] Zhang, Y.; Bakenov, Z.; Zhao, Y.; Konarov, A.; Doan, T. N. L.; Malik, M.; Paron, T.; Chen, P. J. Power Sources 2012, 208, 1.

[78] Wu, F.; Wu, S.; Chen, R.; Chen, J.; Chen, S. Electrochem. Solid-State Lett. 2010, 13, A29.

[79] Wu, F.; Chen, J.; Chen, R.; Wu, S.; Li, L.; Chen, S.; Zhao, T. J. Phys. Chem. C 2011, 115, 6057.

[80] Wu, F.; Chen, J.; Li, L.; Zhao, T.; Chen, R. J. Phys. Chem. C 2011, 115, 24411.

[81] Li, G. C.; Li, G. R.; Ye, S. H.; Gao, X. P. Adv. Energy Mater. 2012, 2, 1238.

[82] Xiao, L.; Cao, Y.; Xiao, J.; Schwenzer, B.; Engelhard, M. H.; Liu, J. Adv. Mater. 2012, 24, 1176.

[83] Yang, Y.; Yu, G.; Cha, J. J.; Wu, H.; Vosgueritchian, M.; Yao, Y.; Bao, Z.; Cui, Y. ACS Nano 2011, 5, 9187.

[84] Song, M. S.; Han, S. C.; Kim, H. S.; Kim, J. H.; Kim, K. T.; Kang, Y. M.; Ahn, H. J.; Dou, S. X.; Lee, J. Y. J. Electrochem. Soc. 2004, 151, A791.

[85] Zheng, W.; Hu, X. G.; Zhang, C. F. Electrochem. Solid-State Lett. 2006, 9, A364.

[86] Zhang, Y.; Wu, X.; Feng, H.; Wang, L.; Zhang, A.; Xia, T.; Dong, H. Int. J. Hydrogen Energy 2009, 34, 1556.

[87] Evers, S.; Yim, T.; Nazar, L. F. J. Phys. Chem. C 2012, 116, 19653.

[88] Zhang, Y.; Bakenov, Z.; Zhao, Y.; Konarov, A.; Doan, T. N. L.; Sun, K. E. K.; Yermukhambetova, A.; Chen, P. Powder Technol. 2013, 235, 248.

[89] Zhang, Y.; Zhao, Y.; Yermukhambetova, A.; Bakenov, Z.; Chen, P. J. Mater. Chem. A 2013, 1, 295.

[90] Lee, K. T.; Black, R.; Yim, T.; Ji, X.; Nazar, L. F. Adv. Energy Mater. 2012, 2, 1490.

[91] Cakan, R. D.; Morcrette, M.; Nouar, F.; Davoisne, C.; Devic, T.; Gonbeau, D.; Dominko, R.; Serre, C.; Tarascon, J. M. J. Am. Chem. Soc. 2011, 133, 16154.
Outlines

/