Article

Micromachined Catalytic Combustible Hydrogen Gas Sensor Based on Nano-structured SnO2

  • Liu Xifeng ,
  • Dong Hanpeng ,
  • Xia Shanhong
Expand
  • a State Key Laboratory of Transducer Technology, Institute of Electronics/Chinese Academy of Sciences, Beijing 100080;
    b Graduate University of Chinese Academy of Sciences, Beijing 100080

Received date: 2012-12-10

  Online published: 2013-02-04

Supported by

Project supported by the National Natural Science Foundation of China (No. 61134010) and National High-tech R&D Program of China (No. 2008AA042205).

Abstract

A new type of micro catalytic combustible gas sensor system was designed and fabricated using micro-electro mechanical system (MEMS) technology. A chemical vapor deposition (CVD) method is used to coat porous nano-crystalline SnO2 catalyst layer. Tin chloride anhydrate vapor was used as the precursor, and it reacted with ammonium sulfide [(NH4)2S] to form tin disulfide (SnS2) nanoparticles. The tin disulfide was dried up, annealed in air, then it transformed into polycrystalline SnO2 nanoparticles. The X-ray diffraction (XRD) measurement was used to investigate the structural properties of the SnO2 films. The morphology of the samples was investigated by field-emission scanning electron microscopy (FESEM). X-ray photoelectron spectroscopy (XPS) provided the information on chemical composition of the SnO2 films. The sensing elements and the reference elements were connected to a Wheatstone bridge circuit for the measurement of gas-sensing properties. The catalytic combustion sensor exhibited relatively higher sensitivity (75.4 mV/1% H2) and good linearity (99.4%) to H2 from 0 to 4% V/V. The response and recovery times to 4% H2 were 0.65 s and 2.32 s, respectively. Finally, the sensor signal was very stable during a 200 d long term operation (accuracy>95%). It was noteworthy that the nano-structured SnO2 as catalyst film in a catalytic combustible gas sensor could considerably improve the performance of the gas sensor. It can be used in realizing portable sensing devices such as hydrogen analyzers and hydrogen leak monitors.

Cite this article

Liu Xifeng , Dong Hanpeng , Xia Shanhong . Micromachined Catalytic Combustible Hydrogen Gas Sensor Based on Nano-structured SnO2[J]. Acta Chimica Sinica, 2013 , 71(04) : 657 -662 . DOI: 10.6023/A12121022

References

[1] Salim, F. B.; Ranec, S. B.; Karekard, R. N.; Aiyera, R. C. Sens. Actuators, B 2011, 153, 382.

[2] Yu, J.; Chen, C.; Li, X.; Shafiei, M.; Ou, J. J. Proeng. 2010, 5, 147.

[3] Sekhar, P. K.; Brosha, E. L.; Mukundan, R.; Nelson, M. A.; Williamson, T. L.; Garzon, F. H. Sens. Actuators, B 2010, 148, 469.

[4] Yang, Y.-L.; Xu, H. Y.; Li, W.-Z. Mater. Rev. 2003, 17, 12. (杨永来, 徐恒泳, 李文钊, 材料导报, 2003, 17, 12.)

[5] Zhou, R. F.; Han, Y. F.; Chen, X. B. Nano-materials & Nano-technology, National Defense Industry Press, Beijing, 2003, pp. 452~453. (周瑞发, 韩雅芳, 陈祥宝, 纳米材料技术, 国防工业出版社, 北京, 2003, pp. 452~453.)

[6] Rani, S.; Roy, S. C.; Bhatnagar, M. C. Sens. Actuators, B 2007, 122, 204.

[7] Soitah, T. N.; Yang, C. H.; Sun, L. Mat. Sci. Semicon. Proc. 2010, 13, 125.

[8] Dang, D. V.; Vu, X. H.; Khuc, Q. T.; Nguyen, D. C. Physica E 2011, 44, 345.

[9] Liu, H.-D.; Huang, J.-M.; Li, X.-L.; Liu, J.; Zhang, Y.-X.; Du, K. Appl. Surf. Sci. 2012, 258, 4917.

[10] Natsuhara, H.; Tatsuyama, T.; Ushiro, M.; Furuhashi, M.; Fujii, T.; Ohashi, F.; Yoshida, N.; Nonomura, S. Thin Solid Films 2011, 519, 4538.

[11] Lee, S. Y.; Shin, Y. H.; Kim, Y. M.; Kim, S. D.; Ju, S. J. Lumin. 2011, 131, 2565.

[12] Dai, S.-D.; Yao, Z.-L. Appl. Surf. Sci. 2012, 258, 5703.

[13] Zhao, Y.; Liu, J.; Shi, L. Y.; Yuan, S.; Fang, J.-H.; Wang, Z. Y.; Zhang, M. H. Appl. Catal., B: Environ. 2010, 100, 68.Krishnakumar, T.; Jayaprakash, R.; Pinna, N.; Phani, A. R.; Passacantano, M.; Santucci, S. J. Phys. Chem. Solids 2009, 70, 993.
Outlines

/