Segregation Phenomenon and Its Control in the Catalytic Growth of Graphene
Received date: 2013-01-06
Online published: 2013-02-04
Supported by
Project supported by the National Natural Science Foundation of China (Nos. 51121091, 20973103, 51072004), and the National Basic Research Program of China (Nos. 2011CB933003, 2012CB933404).
Graphene, a sp2-hybridized two-dimensional honeycomb structure of carbon, has attracted great attentions because of its excellent electrical, optical and mechanical properties. One of the major challenges for its various applications is the production of large-area and high-quality graphene. Among the typical approaches reported up to now, catalytic growth on metal surfaces has become the most attractive technique for graphene synthesis with high quality. Segregation, which refers to the enrichment of carbon onto the surface of metals, is one of the key elementary steps for the catalytic growth of graphene on metal surface. In this paper, we will systematically study the segregation phenomenon and the possibility of its control for graphene growth. We will also demonstrate the typical approaches we have developed for growing high-quality graphene by designing and controlling the segregation process, which include segregation technique, co-segregation, synergistic bimetal alloy technique, etc. For instance, with a designed binary alloy, such as Ni/Mo, Co/Mo, or Fe/Mo, we effectively suppressed the carbon precipitation step and achieved perfect single layer graphene with 100% surface coverage by chemical vapor deposition method. With a segregation-only process of carbon atoms predissolved in bulk metals such as Ni, Co, Ni-Cu alloy and Fe, we succeeded in growing wafer-scale high-quality graphene without using extraneous carbon sources. Using co-segregation technique, we could directly grow nitrogen-doped graphene on nickel with controlled dopant concentration and spatial location. These studies will greatly help to understand the catalytic growth process of graphene and further promote its practical applications.
Zhang Chaohua , Fu Lei , Zhang Yanfeng , Liu Zhongfan . Segregation Phenomenon and Its Control in the Catalytic Growth of Graphene[J]. Acta Chimica Sinica, 2013 , 71(03) : 308 -322 . DOI: 10.6023/A13010023
[1] Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6(3), 183.
[2] Wallace, P. R. Phys. Rev. 1947, 71(9), 622.
[3] Oshima, C.; Nagashima, A. J. Phys.: Condens. Matter 1997, 9(1), 1.
[4] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306(5296), 666.
[5] Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature 2005, 438(7065), 197.
[6] Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438(7065), 201.
[7] Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315(5817), 1379.
[8] Du, X.; Skachko, I.; Barker, A.; Andrei, E. Y. Nat. Nanotechnol. 2008, 3(8), 491.
[9] Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321(5887), 385.
[10] Seol, J. H.; Jo, I.; Moore, A. L.; Lindsay, L.; Aitken, Z. H.; Pettes, M. T.; Li, X. S.; Yao, Z.; Huang, R.; Broido, D.; Mingo, N.; Ruoff, R. S.; Shi, L. Science 2010, 328(5975), 213.
[11] Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M. R.; Geim, A. K. Science 2008, 320(5881), 1308.
[12] Lin, Y. M.; Valdes-Garcia, A.; Han, S. J.; Farmer, D. B.; Meric, I.; Sun, Y. N.; Wu, Y. Q.; Dimitrakopoulos, C.; Grill, A.; Avouris, P.; Jenkins, K. A. Science 2011, 332(6035), 1294.
[13] Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; Kim, Y. J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J. H.; Hong, B. H.; Iijima, S. Nat. Nanotechnol. 2010, 5(8), 574.
[14] Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Nano Lett. 2008, 8(8), 2277.
[15] Liu, C. G.; Yu, Z. N.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10(12), 4863.
[16] Xia, F. N.; Mueller, T.; Lin, Y. M.; Valdes-Garcia, A.; Avouris, P. Nat. Nanotechnol. 2009, 4(12), 839.
[17] Xu, M. S.; Fujita, D.; Hanagata, N. Small 2009, 5(23), 2638.
[18] Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Nature 2010, 467(7312), 190.
[19] Xu, W. G.; Ling, X.; Xiao, J. Q.; Dresselhaus, M. S.; Kong, J.; Xu, H. X.; Liu, Z. F.; Zhang, J. Proc. Natl. Acad. Sci. U. S. A. 2012, 109(24), 9281.
[20] Li, X. L.; Zhang, G. Y.; Bai, X. D.; Sun, X. M.; Wang, X. R.; Wang, E.; Dai, H. J. Nat. Nanotechnol. 2008, 3(9), 538.
[21] Eda, G.; Fanchini, G.; Chhowalla, M. Nat. Nanotechnol. 2008, 3(5), 270.
[22] Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4(1), 25.
[23] Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. J. Phys. Chem. B 2004, 108(52), 19912.
[24] Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312(5777), 1191.
[25] Emtsev, K. V.; Bostwick, A.; Horn, K.; Jobst, J.; Kellogg, G. L.; Ley, L.; McChesney, J. L.; Ohta, T.; Reshanov, S. A.; Rohrl, J.; Rotenberg, E.; Schmid, A. K.; Waldmann, D.; Weber, H. B.; Seyller, T. Nat. Mater. 2009, 8(3), 203.
[26] Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H. B.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9(1), 30.
[27] Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Nature 2009, 457(7230), 706.
[28] Li, X. S.; Cai, W. W.; An, J. H.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; Banerjee, S. K.; Colombo, L.; Ruoff, R. S. Science 2009, 324(5932), 1312.
[29] Liu, Z. F.; Liu, N.; Fu, L.; Dai, B. Y.; Yan, K.; Liu, X.; Zhao, R. Q.; Zhang, Y. F. Nano Lett. 2011, 11(1), 297.
[30] Lin, Y. M.; Dimitrakopoulos, C.; Jenkins, K. A.; Farmer, D. B.; Chiu, H. Y.; Grill, A.; Avouris, P. Science 2010, 327(5966), 662.
[31] Petrone, N.; Dean, C. R.; Meric, I.; van der Zande, A. M.; Huang, P. Y.; Wang, L.; Muller, D.; Shepard, K. L.; Hone, J. Nano Lett. 2012, 12(6), 2751.
[32] Banerjee, B. C.; Walker, P. L.; Hirt, T. J. Nature 1961, 192(480), 450.
[33] Karu, A. E.; Beer, M. J. Appl. Phys. 1966, 37(5), 2179.
[34] Gamo, Y.; Nagashima, A.; Wakabayashi, M.; Terai, M.; Oshima, C. Surf. Sci. 1997, 374(1~3), 61.
[35] Wu, M. C.; Xu, Q.; Goodman, D. W. J. Phys. Chem 1994, 98(19), 5104.
[36] Ueta, H.; Saida, M.; Nakai, C.; Yamada, Y.; Sasaki, M.; Yamamoto, S. Surf. Sci. 2004, 560(1~3), 183.
[37] Coraux, J.; N'Diaye, A. T.; Busse, C.; Michely, T. Nano Lett. 2008, 8(2), 565.
[38] Artyukhov, V. I.; Liu, Y. Y.; Yakobson, B. I. Proc. Natl. Acad. Sci. U. S. A. 2012, 109(38), 15136.
[39] Di, C. A.; Wei, D. C.; Yu, G.; Liu, Y. Q.; Guo, Y. L.; Zhu, D. B.Adv. Mater. 2008, 20(17), 3289.
[40] Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Appl. Phys. Lett. 2008, 93(11), 113103.
[41] Li, X. S.; Cai, W. W.; Colombo, L.; Ruoff, R. S. Nano Lett. 2009, 9(12), 4268.
[42] McLellan, R. B. Scripta Metallurgica 1969, 3(6), 389.
[43] Lopez, G. A.; Mittemeijer, E. Scripta Mater. 2004, 51(1), 1.
[44] Bi, H.; Huang, F. Q.; Zhao, W.; Lu, X. J.; Chen, J.; Lin, T. Q.; Wan, D. Y.; Xie, X. M.; Jiang, M. H. Carbon 2012, 50(8), 2703.
[45] McLean, D. Grain Boundaries in Metals, London, 1957.
[46] Liu, X.; Fu, L.; Liu, N.; Gao, T.; Zhang, Y. F.; Liao, L.; Liu, Z. F. J. Phys. Chem. C 2011, 115(24), 11976.
[47] Zhang, C. H.; Fu, L.; Liu, N.; Liu, M. H.; Wang, Y. Y.; Liu, Z. F. Adv. Mater. 2011, 23(8), 1020.
[48] Dai, B. Y.; Fu, L.; Zou, Z. Y.; Wang, M.; Xu, H. T.; Wang, S.; Liu, Z. F. Nat. Commun. 2011, 2, 522
[49] Hagstrom, S.; Lyon, H.; Somorjai, G. Phys. Rev. Lett. 1965, 15(11), 491.
[50] Lyon, H. B. J. Chem. Phys. 1967, 46(7), 2539.
[51] May, J. W. Surf. Sci. 1969, 17, 267.
[52] Shelton, J. C.; Patil, H. R.; Blakely, J. M. Surf. Sci. 1974, 43(2), 493.
[53] Hamilton, J. C.; Blakely, J. M. Surf. Sci. 1980, 91(1), 199.
[54] Marchini, S.; Gunther, S.; Wintterlin, J. Phys. Rev. B 2007, 76(7), 075429.
[55] Nie, S.; Walter, A. L.; Bartelt, N. C.; Starodub, E.; Bostwick, A.; Rotenberg, E.; McCarty, K. F. ACS Nano 2011, 5(3), 2298.
[56] Odahara, G.; Otani, S.; Oshima, C.; Suzuki, M.; Yasue, T.; Koshikawa, T. Surf. Sci. 2011, 605(11~12), 1095.
[57] Sutter, P. W.; Flege, J. I.; Sutter, E. A. Nat. Mater. 2008, 7(5), 406.
[58] Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Adv. Mater. 2009, 21(27), 2739.
[59] Starodub, E.; Maier, S.; Stass, I.; Bartelt, N. C.; Feibelman, P. J.; Salmeron, M.; McCarty, K. F. Phys. Rev. B 2009, 80(23), 235422.
[60] McCarty, K. F.; Feibelman, P. J.; Loginova, E.; Bartelt, N. C. Carbon 2009, 47(7), 1806.
[61] Cui, Y.; Fu, Q.; Bao, X. H. Phys. Chem. Chem. Phys. 2010, 12(19), 5053.
[62] Murata, Y.; Nie, S.; Ebnonnasir, A.; Starodub, E.; Kappes, B. B.; McCarty, K. F.; Ciobanu, C. V.; Kodambaka, S. Phys. Rev. B 2012,85(20), 205443.
[63] Gao, J. H.; Ishida, N.; Scott, I.; Fujita, D. Carbon 2012, 50(4), 1674.
[64] Gao, J. H.; Sagisaka, K.; Kitahara, M.; Xu, M. S.; Miyamoto, S.; Fujita, D. Nanotechnology 2012, 23(5), 055704.
[65] Xu, M. S.; Fujita, D.; Sagisaka, K.; Watanabe, E.; Hanagata, N. ACS Nano 2011, 5(2), 1522.
[66] Pollard, A. J.; Nair, R. R.; Sabki, S. N.; Staddon, C. R.; Perdigao, L. M. A.; Hsu, C. H.; Garfitt, J. M.; Gangopadhyay, S.; Gleeson, H. F.; Geim, A. K.; Beton, P. H. J. Phys. Chem. C 2009, 113(38), 16565.
[67] Garaj, S.; Hubbard, W.; Golovchenko, J. A. Appl. Phys. Lett. 2010, 97(18), 183103.
[68] Jiao, L. Y.; Fan, B.; Xian, X. J.; Wu, Z. Y.; Zhang, J.; Liu, Z. F. J. Am. Chem. Soc. 2008, 130(38), 12612.
[69] Zhao, R. Q.; Zhang, Y. F.; Gao, T.; Gao, Y. B.; Liu, N.; Fu, L.; Liu, Z. F. Nano Res. 2011, 4(7), 712.
[70] Hofrichter, J.; Szafranek, B. N.; Otto, M.; Echtermeyer, T. J.; Baus, M.; Majerus, A.; Geringer, V.; Ramsteiner, M.; Kurz, H. Nano Lett. 2010, 10(1), 36.
[71] Zheng, M.; Takei, K.; Hsia, B.; Fang, H.; Zhang, X. B.; Ferralis, N.; Ko, H.; Chueh, Y. L.; Zhang, Y. G.; Maboudian, R.; Javey, A. Appl. Phys. Lett. 2010, 96(6), 063110.
[72] Amini, S.; Garay, J.; Liu, G. X.; Balandin, A. A.; Abbaschian, R. J. Appl. Phys. 2010, 108(9), 094321.
[73] Schwierz, F. Nat. Nanotechnol. 2010, 5(7), 487.
[74] Zhang, Y. B.; Tang, T. T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459(7248), 820.
[75] Taychatanapat, T.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P. Nat. Phys. 2011, 7(8), 621.
[76] Mattevi, C.; Kim, H.; Chhowalla, M. J. Mater. Chem. 2011, 21(10), 3324.
[77] Rasool, H. I.; Song, E. B.; Allen, M. J.; Wassei, J. K.; Kaner, R. B.; Wang, K. L.; Weiller, B. H.; Gimzewski, J. K. Nano Lett. 2011, 11(1), 251.
[78] Chen, S. S.; Cai, W. W.; Piner, R. D.; Suk, J. W.; Wu, Y. P.; Ren, Y. J.; Kang, J. Y.; Ruoff, R. S. Nano Lett. 2011, 11(9), 3519.
[79] Wan, D. Y.; Lin, T. Q.; Bi, H.; Huang, F. Q.; Xie, X. M.; Chen, I. W.; Jiang, M. H. Adv. Funct. Mater. 2012, 22(5), 1033.
[80] Lee, S.; Lee, K.; Zhong, Z. H. Nano Lett. 2010, 10(11), 4702.
[81] Yan, K.; Peng, H. L.; Zhou, Y.; Li, H.; Liu, Z. F. Nano Lett. 2011, 11(3), 1106.
[82] Wang, H. B.; Maiyalagan, T.; Wang, X. ACS Catal. 2012, 2(5), 781.
[83] Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Nano Res. 2009, 2(6), 509.
[84] Zhang, Y. F.; Gao, T.; Xie, S. B.; Dai, B. Y.; Fu, L.; Gao, Y. B.; Chen, Y. B.; Liu, M. X.; Liu, Z. F. Nano Res. 2012, 5(6), 402.
[85] Zhang, Y.; Gomez, L.; Ishikawa, F. N.; Madaria, A.; Ryu, K.; Wang, C. A.; Badmaev, A.; Zhou, C. W. J. Phys. Chem. Lett. 2010, 1(20), 3101.
[86] Yoshii, S.; Nozawa, K.; Toyoda, K.; Matsukawa, N.; Odagawa, A.; Tsujimura, A. Nano Lett. 2011, 11(7), 2628.
[87] Iwasaki, T.; Park, H. J.; Konuma, M.; Lee, D. S.; Smet, J. H.; Starke, U. Nano Lett. 2011, 11(1), 79.
[88] Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C. M.; Tsuji, M.; Ikeda, K.; Mizuno, S. ACS Nano 2010, 4(12), 7407.
/
〈 |
|
〉 |