Review

Progress in Preparation and Properties of the Bowl-like Particles and Arrays

  • Guo Yangguang ,
  • Yang Mu ,
  • Wu Qiang
Expand
  • School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083

Received date: 2012-12-13

  Online published: 2013-03-01

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 51073022, 50836001).

Abstract

Nonspherical particles include various morphologies, such as snow-shaped, mushroom-shaped, dumbbell-shaped, H2O molecules-shaped, bowl-like. Their unique structures not only provide novel assembly units, but also bring many special physical and chemical properties. During the last ten years, micro/nanometer bowl-like particles and arrays have been given widely attention. Due to their large specific surface area, low structure symmetry, the bowl-like particles and bowl-like arrays have unique optical, magnetic properties and provide broad potential applications in nano-reactors, drug delivery, high-sensitivity sensor, data storage, assembly units, solar cell and other fields. This review gives a systematic overview on the recent advances in the fabrication and properties of the bowl-like particles and bowl-like arrays. First, various synthesis routes are introduced in detail, including the monolayer colloidal crystal template approach, the bowl-like array template approach, induced growth, heterodimeric particle approach, hollow microspheres invagination, seed polymerization, solvent-treatment approach. Next, the relationship between the structure and the property of the bowl-like particles and arrays are investigated according to the types of material. The diverse applications of the obtained materials are also summarized, for example photo catalysis, solar cells, micro/nanometer devices, sensors, and so on. Finally, the advantages and disadvantages of various synthesized methods are discussed and an outlook on future developments in this area is also provided.

Cite this article

Guo Yangguang , Yang Mu , Wu Qiang . Progress in Preparation and Properties of the Bowl-like Particles and Arrays[J]. Acta Chimica Sinica, 2013 , 71(05) : 693 -699 . DOI: 10.6023/A12121048

References

[1] Shen, H. R.; El-aasser, M. S.; Vanderhoff, J. W. J. Polym. Sci. Polym. Chem. 1990, 28, 653.
[2] Park, J. G.; Forster, J. D.; Dufresne, E. R. J. Am. Chem. Soc. 2010, 132, 5960.
[3] Park, J. G.; Forster, J. D.; Dufresne, E. R. Langmuir 2009, 25, 8903.
[4] Deng, W.; Wang, M. Y.; Chen, G.; Kan, C. Y. Eur. Polym. J.2010, 46, 1210.
[5] Wang, Z.; Qian, X. F.; Yin, J.; Zhu, Z. K. Langmuir 2004, 20, 3441.
[6] Heiz, U.; Vanolli, F.; Sanchez, A.; Schneider, W. D. J. Am. Chem. Soc. 1998, 120, 9668.
[7] Ye, J.; Dorpe, P. V.; Roy, W. V.; Lodewijks, K.; Vlaminck, I. D.; Maes, G.; Borghs, G. J. Phys. Chem. C 2009, 113, 3110.
[8] Grabar, K. C.; Smith, P. C.; Musick, M. D.; Davis, J. A.; Walter, D. G.; Jackson, M. A.; Guthrie, A. P.; Natan, M. J. J. Am. Chem. Soc. 1996, 118, 1148.
[9] Ma, G. H.; Su, Z. G. Polymer Microsphere Material, Chemical Industry Press, Beijing, 2005, pp. 63~67. (马光辉, 苏志国, 高分子微球材料, 化学工业出版社, 北京, 2005, pp. 63~67.)
[10] Love, J. C.; Gates, B. D.; Wolfe, D. B.; Paul, K. E.; Whitesides, G. M. Nano Lett. 2002, 2, 891.
[11] Kim, J. W.; Larsen, R. J.; Weitz, D. A. J. Am. Chem. Soc. 2006, 128, 14374.
[12] Yin, Y. D.; Lu, Y.; Gates, B.; Xia, Y. N. J. Am. Chem. Soc. 2001, 123, 8718.
[13] Jeong, U.; Im, S. H.; Pedro, H. C.; Camargo, P. H. K.; Kim, J. H.; Xia, Y. N. Langmuir 2007, 23, 10968.
[14] Wang, Z. G.; Shang, H.; Lee, G. U. Langmuir 2006, 22, 6723.
[15] Chen, S. Y.; Yen, Y. T.; Chen, Y. Y.; Hsu, C. S.; Chueh, Y. L.; Chen, L. J. RSC Adv. 2012, 2, 1314.
[16] Lee, J. H.; Leu, I. C.; Chung, Y. W.; Hon, M. H. J. Nanosci.Nanotechnol. 2008, 8, 4436.
[17] Yu, J.; Geng, C.; Zeng, Y. M.; Yan, Q. F.; Wang, X. Q.; Shen, D. Z.ACS Macro. Lett. 2012, 1, 62.
[18] Fu, G. F.; Vary, P. S.; Lin, C. T. J. Phys. Chem. B 2005, 109, 8889.
[19] Zhang, J. H.; Li, Y. F.; Zhang, X. M.; Yang, B. Adv. Mater. 2010, 22, 4249.
[20] Yang, S. K.; Lei, Y. Nanoscale 2011, 3, 2768.
[21] Ye, X. Z.; Qi, L. M. Nano Today 2011, 6, 608
[22] Liu, J. Q.; Maaroof, A. I.; Wieczorek, L.; Cortie, M. B. Adv. Mater. 2005, 17, 1276.
[23] Liu, J.; Cankurtaran, B.; McCredie, G.; Ford, M. J.; Wieczorek, L.; Cortie, M. B. Nanotechnology 2005, 16, 3023.
[24] Xu, M. J.; Lu, N.; Xu, H. B.; Qi, D. P.; Wang, Y. D.; Chi, L. F.Langmuir 2009, 25, 11216.
[25] Charnay, C.; Lee, A.; Man, S. Q.; Moran, C. E.; Radloff, C.; Bradley, R. K.; Halas, N. J. J. Phys. Chem. B 2003, 107, 7327.
[26] Wang, X. D.; Graugnard, E.; King, J. S.; Wang, Z. L.; Summers, C. J. Nano Lett. 2004, 4, 2223.
[27] Wang, X. D.; Lao, C. S.; Graugnard, E.; Summers, C. J.; Wang, Z. L. Nano Lett. 2005, 5, 1784.
[28] Liu, J. B.; Zhu, M. W.; Zhan, P.; Dong, H.; Dong, Y. E.; Qu, X. T.; Nie, Y. H.; Wang, Z. L. Nanotechnology 2006, 17, 4191.
[29] Ye, J.; Dorpe, P. V.; Roy, W. V.; Borghs, G.; Maes, G. Langmuir 2009, 25, 1822.
[30] Ding, T.; Song, K.; Yang, G. Q.; Tung, C. Macromol. Rapid Commun. 2012, 33, 1562.
[31] Cao, B. Q.; Cai, W. P.; Sun, F. Q.; Li, Y.; Lei, Y.; Zhang, L. D.Chem. Commun. 2004, 1604.
[32] Duan, G. T.; Cai, W. P.; Li, Y.; Li, Z. G.; Cao, B. Q.; Luo, Y. Y. J. Phys. Chem. B 2006, 110, 7184.
[33] Sun, F. Q.; Cai, W. P.; Li, Y.; Cao, B. Q.; Lu, F.; Duan, G. T.; Zhang, L. D. Adv. Mater. 2005, 16, 1116.
[34] Xia, X. H.; Tu, J. P.; Zhang, J.; Wang, X. L.; Zhao, X. B. ACS Appl. Mater. Interfaces 2010, 2, 186.
[35] Li, Y.; Li, C. C.; Cho, S. O.; Duan, G. T.; Cai, W. P. Langmuir 2007, 23, 9802.
[36] Sun, F. Q.; Yu, J. C. Angew. Chem. Int. Ed. 2007, 46, 773.
[37] Hong, G. S.; Li, C.; Qi, L. M. Adv. Funct. Mater. 2010, 20, 3774.
[38] Li, C.; Hong, G. S.; Yu, H.; Qi, L. M. Chem. Mater. 2010, 22, 3206.
[39] Lang, X. Z.; Qiu, T.; Zhang, W. J.; Yin, Y.; Chu, P. K. J. Phys. Chem. C 2011, 115, 24328.
[40] Zhao, A. W.; Liang, J. B.; Xiong, Z. L.; Qian, Y. T. Chem. Lett. 2007, 36, 432.
[41] Wang, Y. F.; Chen, X. L.; Zhang, J. H.; Sun, Z. Q.; Li, Y. F.; Zhang, K.; Yang, B. Colloids Surf. A 2008, 329, 184.
[42] Krishna, K. S.; Mansoori, U.; Selvi, N. R.; Eswaramoorthy, M. Angew. Chem. Int. Ed. 2007, 46, 5962.
[43] Jagadeesan, D.; Mansoori, U.; Mandal, P.; Sundaresan, A.; Eswaramoorthy, M. Angew. Chem. 2008, 120, 7799.
[44] Zhou, W.; Lin, L. J.; Zhao, D. Y.; Guo, L. J. Am. Chem. Soc.2011, 133, 8389.
[45] Zhao, N. N.; Li, L. S.; Huang, T.; Qi, L. M. Nanoscale 2010, 2, 2418.
[46] Ridelman, Y.; Singh, G.; Popovitz-Biro, R.; Wolf, S. G.; Das, S.; Klajn, R. Small 2012, 8, 654.
[47] Zoldesi, C. I.; Walree, C. A.; Imhof, A. Langmuir 2006, 22, 4343.
[48] Zhang, H. J.; Ye, F.; Xu, H. F.; Liu, L. M.; Guo, H. F. Mater. Lett. 2010, 64, 1473.
[49] Jin, Q.; Zheng, M. T.; Wu, Y. J.; Xie, C. L.; Xiao, Y.; Liu, Y. L. J Mater. Sci. 2011, 46,7639.
[50] Omer-Mizrahi, M.; Margel, S. J. Polym. Sci. Polym. Chem. 2007, 45, 4612.
[51] Liu, B.; Zhang, C. L.; Liu, J. G.; Quand, X. Z.; Yang, Z. Z. Chem. Commun. 2009, 3871.
[52] Ge, X. P.; Wang, M. Z.; Yuan, Q.; Wang, H.; Ge, X. W. Chem. Commun. 2009, 2765.
[53] Im, S. H.; Jeong, U.; Xia, Y. N. Nat. Mater. 2005, 4, 671.
[54] Yin, W.; Yates, M. Z. Langmuir 2008, 24, 701.
[55] Tanaka, T.; Komatsu, Y.; Fujibayashi, T.; Minami, H.; Okubo, M.Langmuir 2010, 26, 3848.
[56] Wang, Y.; Guo, B. H.; Wan, X.; Xu, J.; Wang, X.; Zhang, Y. P.Polymer 2009, 50, 3361.
[57] Chen, J. Y; Chao, D. M.; Lu, X. F.; Zhang, W. J.; Manohar, S. K. Macromol. Rapid Commun. 2006, 27, 771.
[58] Li, X.; Peng, J.; Kang, J. H.; Choy, J. H.; Steinhart, M.; Knoll, W.; Kim, D. H. Soft Matter 2008, 4, 515.
[59] Lan, D.; Wang, Y. R.; Du, X. L.; Mei, Z. X.; Xue, Q. K.; Wang, K. Cryst. Growth Des. 2008, 8, 2912.
[60] Zhang, Y. M.; Lan, D.; Wang, Y. R.; Cao, H.; Zhao, Y. P. J. ColloidInterface Sci. 2010, 351, 288.
[61] Li, Z. G.; Cai, W. P.; Duan, G. T.; Zeng, H. B.; Liu, P. S. J. Nanosci. Nanotechnol. 2009, 9, 2970.
[62] Mou, F. Z.; Xu, L. L.; Ma, H. R.; Guan, J. G.; Chenb, D. R.;Wang, S. H. Nanoscale 2012, 4, 4650.
[63] Yuan, Y. F.; Xia, X. H.; Wu, J. B.; Yang, J. L.; Chen, Y. B.; Guo,S. Y. Electrochem. Commun. 2010, 12, 890.
[64] John, N. S.; Selvi, N. R.; Mathur, M.; Govindarajan, R.; Kulkarni, G. U. J. Phys. Chem. B 2006, 110, 22975.
[65] Ye, J.; Lagae, L.; Maes, G.;Borghs, G.; Dorpe, P. V. Opt. Express. 2009, 17, 23765.
[66] Rao, Y. Y.; Tao, Q.; An, M.; Rong, C. H.; Dong, J.; Dai, Y. R.; Qian, W. P. Langmuir 2011, 27, 13308.
[67] Hosein, I. D.; LiddellIan, C. M. Langmuir 2007, 23, 8810.
[68] Guan, G. J.; Zhang, Z. P.; Wang, Z. Y.; Liu, B. H.; Gao, D. M.; Xie, C. G. Adv. Mater. 2007, 19, 2370.
Outlines

/