Review

Nanocombinatorial Chemistry in Nanomaterial Discovery and Nanomedicine

  • Wu Jinmei ,
  • Su Gaoxing ,
  • Zhang Bin ,
  • Yan Bing
Expand
  • School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100

Received date: 2013-01-17

  Online published: 2013-03-01

Supported by

Project supported by the National Basic Research Program of China (973 Program, No. 2010CB933504) and the National Natural Science Foundation of China (Nos. 21137002, 21077068).

Abstract

Combinatorial chemistry is a scientific technology covering computational chemistry, organic synthesis, and high-throughput screening. Combinatorial chemistry can achieve synthesis and screenings of large compounds within a short time, which can greatly improve compounds synthesis efficiency, shorten compounds discovery cycle and reduce cost effectively. It has greatly impacted on lead compounds discovery with high efficiency, miniaturization and high automation. In recent years, combinatorial chemistry was not only applied in drugs discovery, but also applied in catalyst discovery, pesticide discovery and polymer discovery because of its advantages. With the rapid development of nanotechnology, combinatorial chemistry strategies and high throughput technologies have been introduced to this area. The development of nanotechnology will have tremendous impacts on every aspect of our society. However, it requires a time-consuming research effort on the discovery and optimization of novel nanomaterials with unique properties. Parallel reactions and high-throughput screening are considered to be more efficient than conventional linear operations. In addition, combinatorial chemistry can achieve the biological activities variety of nanomaterials by modifying nanomaterials surface. In this review, we summarized the applications of nanocombinatorial chemistry in the discovery of novel nano materials and the discovery of medicines with modified nanomaterials. We also summarized many high-throughput screening technologies which were used in nanotechnology research, including magnetic resonance imaging (MRI), automation gene chip system and fluorescent activated cell sorter (FACS). Finally, for easily understanding the tendency of nano-combinatorial chemistry, some challenges and future perspectives of nanocombinatorial chemistry were also included.

Cite this article

Wu Jinmei , Su Gaoxing , Zhang Bin , Yan Bing . Nanocombinatorial Chemistry in Nanomaterial Discovery and Nanomedicine[J]. Acta Chimica Sinica, 2013 , 71(04) : 493 -500 . DOI: 10.6023/A13010088

References

[1] Gordon, E. M.; Barrett, R. W.; Dower, W. J.; Fodor, S. P. A.; Gallop, M. A. J. Med. Chem. 1994, 37, 1385.

[2] Duan, S.; Kahn, M.; Senkan, S. Comb. Chem. High T. Scr. 2007, 10, 111.

[3] Green, J. J.; Langer, R.; Anderson, D. G. Acc. Chem. Res. 2008, 41, 749.

[4] Lindell, S. D.; Pattenden, L. C.; Shannon, J. Bioorg. Med. Chem. 2009, 17, 4035.

[5] Ferrari, M. Nat. Rev. Cancer 2005, 5, 161.

[6] Youtie, J.; Iacopetta, M.; Graham, S. J. Technol. Tran. 2008, 33, 315.

[7] Su, G.; Yan, B. J. Comb. Chem. 2010, 12, 215.

[8] Hermans, S.; Raja, R.; Thomas, J. M.; Johnson, B. F. G.; Sankar, G.; Gleeson, D. Angew. Chem., Int. Ed. 2001, 40, 1211.

[9] Glaspell, G.; Fuoco, L.; El-Shall, M. S. J. Phys. Chem. B 2005, 109, 17350.

[10] Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T. J. Am. Chem. Soc. 2004, 126, 5026.

[11] Senkan, S.; Kahn, M.; Duan, S.; Ly, A.; Leidholm, C. Catal. Today 2006, 117, 291.

[12] Kahn, M.; Seubsai, A.; Onal, I.; Senkan, S. Comb. Chem. High T. Scr. 2010, 13, 67.

[13] Noda, S.; Tsuji, Y.; Murakami, Y.; Maruyama, S. Appl. Phys. Lett. 2005, 86, 173106.

[14] Noda, S.; Sugime, H.; Osawa, T.; Tsuji, Y.; Chiashi, S.; Murakami, Y.; Maruyama, S. Carbon 2006, 44, 1414.

[15] Ago, H.; Nakamura, K.; Imamura, S.; Tsuji, M. Chem. Phys. Lett. 2004, 391, 308.

[16] Dai, H.; Rinzler, A. G.; Nikolaev, P.; Thess, A.; Colbert, D. T.; Smalley, R. E. Chem. Phys. Lett. 1996, 260, 471.

[17] Vegas, A. J.; Anderson, D. G. Polym. Sci.: A Compr. Ref. 2012, 9, 457.

[18] Zugates, G. T.; Tedford, N. C.; Zumbuehl, A.; Jhunjhunwala, S.; Kang, C. S.; Griffith, L. G.; Lauffenburger, D. A.; Langer, R.; Anderson, D. G. Bioconjugate Chem. 2007, 18, 1887.

[19] Van Vliet, L. D.; Chapman, M. R.; Avenier, F.; Kitson, C. Z.; Hollfelder, F. ChemBioChem 2008, 9, 1960.

[20] Akinc, A.; Zumbuehl, A.; Goldberg, M.; Leshchiner, E. S.; Busini, V.; Hossain, N.; Bacallado, S. A.; Nguyen, D. N.; Fuller, J.; Alvarez, R. Nat. Biotechnol. 2008, 26, 561.

[21] Anderson, D. G.; Lynn, D. M.; Langer, R. Angew. Chem., Int. Ed. 2003, 115, 3261.

[22] Sunshine, J. C.; Akanda, M. I.; Li, D.; Kozielski, K. L.; Green, J. J. Biomacromolecules 2011, 12, 3592.

[23] Anderson, K.; Sizovs, A.; Cortez, M.; Waldron, C.; Haddleton, D. M.; Reineke, T. M. Biomacromolecules 2012, 13, 2229.

[24] Sunshine, J. C.; Peng, D. Y.; Green, J. J. Mol. Pharm. 2012, 9, 3375.

[25] Martello, F.; Piest, M.; Engbersen, J. F. J.; Ferruti, P. J. Controlled Release 2012, 164, 372.

[26] Barua, S.; Joshi, A.; Banerjee, A.; Matthews, D.; Sharfstein, S. T.; Cramer, S. M.; Kane, R. S.; Rege, K. Mol. Pharm. 2008, 6, 86.

[27] Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.

[28] Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Science 2008, 321, 385.

[29] Viculis, L. M.; Mack, J. J.; Kaner, R. B. Science 2003, 299, 1361.

[30] Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2008, 4, 25.

[31] Ang, P. K.; Wang, S.; Bao, Q.; Thong, J. T. L.; Loh, K. P. ACS Nano 2009, 3, 3587.

[32] Alexander, K. D.; Hampton, M. J.; Zhang, S.; Dhawan, A.; Xu, H.; Lopez, R. J. Raman Spectrosc. 2009, 40, 2171.

[33] Mulet, X.; Kennedy, D. F.; Conn, C. E.; Hawley, A.; Drummond, C. J. Int. J. Pharm. 2010, 395, 290.

[34] Han, S. M.; Shah, R.; Banerjee, R.; Viswanathan, G.; Clemens, B.; Nix, W. Acta Mater. 2005, 53, 2059.

[35] Tse, N. M. K.; Kennedy, D. F.; Moffat, B. A.; Kirby, N.; Caruso, R. A.; Drummond, C. J. ACS Comb. Sci. 2012, 14, 443.

[36] Li, J. J.; Wang, Y. A.; Guo, W.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. J. Am. Chem. Soc. 2003, 125, 12567.

[37] Jana, N. R.; Peng, X. J. Am. Chem. Soc. 2003, 125, 14280.

[38] Sheng, Y.; Liu, C.; Yuan, Y.; Tao, X.; Yang, F.; Shan, X.; Zhou, H.; Xu, F. Biomaterials 2009, 30, 2340.

[39] Basiruddin, S.; Saha, A.; Pradhan, N.; Jana, N. R. J. Phys. Chem. C 2010, 114, 11009.

[40] L関y, R.; Thanh, N. T. K.; Doty, R. C.; Hussain, I.; Nichols, R. J.; Schiffrin, D. J.; Brust, M.; Fernig, D. G. J. Am. Chem. Soc. 2004, 126, 10076.

[41] Dobrovolskaia, M. A.; Germolec, D. R.; Weaver, J. L. Nat. Nanotechnol. 2009, 4, 411.

[42] Hauck, T. S.; Anderson, R. E.; Fischer, H. C.; Newbigging, S.; Chan, W. C. W. Small 2009, 6, 138.

[43] Pisanic, T. R.; Blackwell, J. D.; Shubayev, V. I.; Fiñones, R. R.; Jin, S. Biomaterials 2007, 28, 2572.

[44] Cheng, C.; M黮ler, K. H.; Koziol, K. K. K.; Skepper, J. N.; Midgley, P. A.; Welland, M. E.; Porter, A. E. Biomaterials 2009, 30, 4152.

[45] Lanone, S.; Rogerieux, F.; Geys, J.; Dupont, A.; Maillot-Marechal, E.; Boczkowski, J.; Lacroix, G.; Hoet, P. Part. Fibre Toxicol. 2009, 6, 455.

[46] Rouse, J. G.; Yang, J.; Barron, A. R.; Monteiro-Riviere, N. A. Toxicol. in Vitro 2006, 20, 1313.

[47] Hanley, C.; Thurber, A.; Hanna, C.; Punnoose, A.; Zhang, J.; Wingett, D. G. Nanoscale Res. Lett. 2009, 4, 1409.

[48] Zhou, H. Y.; Mu, Q. X.; Gao, N. N.; Liu, A. F.; Xing, Y. H.; Gao, S. L.; Zhang, Q.; Qu, G. B.; Chen, Y. Y.; Liu, G.; Zhang, B.; Yan, B. Nano Lett. 2008, 8, 859.

[49] Mu, Q. X.; Du, G.; Chen, Y. Y.; Zhang, B.; Yan, B. ACS Nano 2009, 3, 1139.

[50] Zhang, B.; Xing, Y.; Li, Z.; Zhou, H.; Mu, Q.; Yan, B. Nano Lett. 2009, 9, 2280.

[51] Gao, N.; Zhang, Q.; Mu, Q.; Bai, Y.; Li, L.; Zhou, H.; Butch, E. R.; Powell, T. B.; Snyder, S. E.; Jiang, G.; Yan, B. ACS Nano 2011, 5, 4581.

[52] McCarthy, J. R.; Weissleder, R. Adv. Drug Delivery Rev. 2008, 60, 1241.

[53] Weissleder, R.; Kelly, K.; Sun, E. Y.; Shtatland, T.; Josephson, L. Nat. Biotechnol. 2005, 23, 1418.

[54] Leimgruber, A.; Berger, C.; Cortez-Retamozo, V.; Etzrodt, M.; Newton, A. P.; Waterman, P.; Figueiredo, J. L.; Kohler, R. H.; Elpek, N.; Mempel, T. R. Neoplasia (New York, NY) 2009, 11, 459.

[55] Kelly, K. A.; Shaw, S. Y.; Nahrendorf, M.; Kristoff, K.; Aikawa, E.; Schreiber, S. L.; Clemons, P. A.; Weissleder, R. Integr. Biol. 2009, 1, 311.

[56] Lee, J. H.; Huh, Y. M.; Jun, Y.; Seo, J.; Jang, J.; Song, H. T.; Kim, S.; Cho, E. J.; Yoon, H. G.; Suh, J. S.; Cheon, J. Nat. Med. 2007, 13, 95.

[57] Qian, X.; Peng, X. H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S. Nat. Biotechnol. 2007, 26, 83.

[58] Zhou, H. Y.; Jiao, P. F.; Yang, L.; Li, X.; Yan, B. J. Am. Chem. Soc. 2010, 133, 680.

[59] Muir, B. W.; Moffat, B. A.; Harbour, P.; Coia, G.; Zhen, G.; Waddington, L.; Scoble, J.; Krah, D.; Thang, S. H.; Chong, Y. K. J. Phys. Chem. C 2009, 113, 16615.

[60] Högemann, D.; Ntziachristos, V.; Josephson, L.; Weissleder, R. Bioconjugate Chem. 2002, 13, 116.

[61] Acharya, D. P.; Moffat, B. A.; Polyzos, A.; Waddington, L.; Coia, G.; Wright, D. K.; Wang, H. X.; Egan, G. F.; Muir, B. W.; Hartley, P. G. RSC Adv. 2012, 2, 6655.

[62] Haun, J. B.; Castro, C. M.; Wang, R.; Peterson, V. M.; Marinelli, B. S.; Lee, H.; Weissleder, R. Sci. Transl. Med. 2011, 3, 71ra16.

[63] Zhang, T.; Stilwell, J. L.; Gerion, D.; Ding, L.; Elboudwarej, O.; Cooke, P. A.; Gray, J. W.; Alivisatos, A. P.; Chen, F. F. Nano Lett. 2006, 6, 800.

[64] Ding, L.; Stilwell, J.; Zhang, T.; Elboudwarej, O.; Jiang, H.; Selegue, J. P.; Cooke, P. A.; Gray, J. W.; Chen, F. F. Nano Lett. 2005, 5, 2448.

[65] Lorenz, M. R.; Holzapfel, V.; Musyanovych, A.; Nothelfer, K.; Walther, P.; Frank, H.; Landfester, K.; Schrezenmeier, H.; Mailänder, V. Biomaterials 2006, 27, 2820.

[66] Schellenberger, E. A.; Reynolds, F.; Weissleder, R.; Josephson, L. ChemBioChem 2004, 5, 275.
Outlines

/