Article

Theoretical Studies on the Single Water Molecule Effects on the Reaction of HOBr with OH·

  • Gao Chenggui ,
  • Long Zhengwen ,
  • Tan Xingfeng ,
  • Long Bo ,
  • Long Chaoyun ,
  • Qin Shuijie ,
  • Zhang Weijun
Expand
  • a Department of Physics, Guizhou University, Guiyang 550025;
    b College of Information Engineering, Guizhou MinZu University, Guiyang 550025;
    c Laboratory of Environment Spectroscopy, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei 230031

Received date: 2013-01-12

  Online published: 2013-03-15

Supported by

Project supported by the National Natural Science Foundation of China (No. 41165007) and Science and Technology Foundation of GuiZhou Province, China (Nos. [2011]2107, [2012]2189), and Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (No. JJ1107) and Innovation Foundation for Graduate Students of Guizhou University.

Abstract

In this article, the reactions of OH· with HOBr in the absence and presence of water are investigated using the CCSD(T) and B3LYP theoretical methods at the aug-cc-pVTZ basis set. The goal of the present investigation is to determine how the single water molecule can affect the reaction mechanisms and kinetics of OH·+HOBr and estimate the importance of water effects on the OH·+HOBr reaction. The calculated results show that there are two reaction channels and the corresponding pre-complexes for the reaction of OH·+HOBr. The barriers of the reaction OH·+HOBr are 1.13 kcal·mol-1, 2.02 kcal·mol-1, respectively, which are in good agreement with the previous experimental and theoretical results. In addition, the reaction of OH·+HOBr is very complex when one water molecule is introduced because there are six reaction pathways and corresponding pre-reactive complexes. In particular, the activated barriers of the reaction HOBr+H2O…HO· are about 1.00 kcal·mol-1 lower than those of the naked reaction OH·+HOBr. Additionally, to estimate the importance of these processes in the atmosphere, the rate constant is evaluated using the conventional transition state theory with Wigner tunneling correction. The calculated rate constant of the naked reaction is 1.77×10-13 cm3·molecule-1·s-1 at 298 K, which is consistent with the previous computational value. However, the rate constant of HOBr…H2O+OH· reaction is 50 times faster than that of the naked reaction OH·+HOBr. Combined with concentrations of these species in the atmosphere, the reaction of OH· with HOBr in the presence of water is less important than the naked reaction OH·+HOBr. However, water effects on the OH·+HOBr are very obvious, which is very similar to the reaction OH·+HOCl. Therefore, the present study provides further insight into water effects in the atmospheric chemistry.

Cite this article

Gao Chenggui , Long Zhengwen , Tan Xingfeng , Long Bo , Long Chaoyun , Qin Shuijie , Zhang Weijun . Theoretical Studies on the Single Water Molecule Effects on the Reaction of HOBr with OH·[J]. Acta Chimica Sinica, 2013 , 71(05) : 849 -856 . DOI: 10.6023/A13010058

References

[1] Ge, M.-F.; Ma, C.-P. Prog. Chem. 2009, 21, 307. (葛茂发, 马春平, 化学进展, 2009, 21, 307.)
[2] Platt, U.; Hönninger, G. Chemosphere 2003, 52, 325.
[3] Peters, C.; Pechtl, S.; Stutz, J.; Hebestreit, K.; Hönninger, G.; Heumann, K. G.; Schwarz, A.; Winterlik, J.; Platt, U. Atmos. Chem. Phys. 2005, 5, 3357.
[4] Zeng, X.-Q.; Wang, D.-X. Sci. China Ser. B-Chem. 2007, 37, 209. (曾小庆, 王殿勋, 中国科学B辑: 化学, 2007, 37, 209.)
[5] Qiao, Z.; Sun, S.; Sun, Q.; Zhao, J.; Wang, D. J. Chem. Phys. 2003, 119, 7111.
[6] Montzka, S. A.; Butler, J. H.; Myers, R. C.; Thompson, T. M.; Swanson, T. H.; Clarke, A. D.; Lock, L. T.; Elkins, J. W. Science 1996, 272, 1318.
[7] Fan, H.-M.; Li, X.-Y.; Meng, L.-P.; Zheng, S.-J.; Zeng, Y.-L. Acta Chim. Sinica 2007, 65, 395. (樊红敏, 李晓艳, 孟令鹏, 郑世钧, 曾艳丽, 化学学报, 2007, 65, 395.)
[8] Bedjanian, Y.; Poulet, G. Chem. Rev. 2003, 103, 4639.
[9] Kukui, A.; Kirchner, U.; Benter, T.; Schindler, R. N. Ber. Bunsen-Ges. Phys. Chem. 1996, 100, 455.
[10] Wang, L.; Liu, J.-Y.; Li, Z.-S.; Sun, C.-C. J. Comput. Chem. 2004, 25, 558.
[11] Vöhringer-Martinez, E.; Hansmann, B.; Hernandez, H.; Francisco, J. S.; Troe, J.; Abel, B. Science 2007, 315, 497.
[12] Anglada, J. M.; Gonzalez, J. ChemPhysChem 2009, 10, 3034.
[13] Vaida, V.; Headrick, J. E. J. Phys. Chem. A 2000, 104, 5401.
[14] Aloisio, S.; Francisco, J. S. Acc. Chem. Res. 2000, 33, 825.
[15] Sennikov, P.-G.; Ignatov, S. K.; Schrems, O. ChemPhysChem 2005, 6, 392.
[16] Vaida, V.; Kjaergaard, H. G.; Feierabend, K. J. Int. Rev. Phys. Chem. 2003, 22, 203.
[17] Galano, A.; Narciso-Lopez, M.; Francisco-Marquez, M. J. Phys. Chem. A 2010, 114, 5796.
[18] Vaida,V. J. Chem. Phys. 2011, 135, 020901.
[19] Buszek, R. J.; Francisco, J. S.; Anglada, J. M. Int. Rev. Phys. Chem. 2011, 30, 335.
[20] Jørgensen, S.; Kjaergaard, H. G. J. Phys. Chem. A 2010, 114, 4857.
[21] Chen, H.-T.; Chang, J.-G.; Chen, H.-L. J. Phys. Chem. A 2008, 112, 8093.
[22] Phillips, D. L.; Zhao, C.-Y.; Wang, D.-Q. J. Phys. Chem. A 2005, 109, 9653.
[23] Gonzalez, J.; Anglada, J. M.; Buszek, R. J.; Francisco, J. S. J. Am. Chem. Soc. 2011, 133, 3345.
[24] Njegic, B.; Raff, J. D.; Finlayson-Pitts, B. J.; Gordon, M. S.; Gerber, R. B. J. Phys. Chem. A 2010, 114, 4609.
[25] Long, B.; Tan, X.-F.; Ren, D.-S.; Zhang, W.-J. J. Mol. Struct. Theochem. 2010, 956, 44.
[26] Zhang, T. L.; Wang, W. L.; Zhang, P.; Lü, J.; Zhang, Y. Phys. Chem. Chem. Phys. 2011, 13, 20794.
[27] Buszek, R. J.; Torrent-Sucarrat, M.; Anglada, J. M.; Francisco, J. S. J. Phys. Chem. A 2012, 116, 5821.
[28] Buszek, R. J.; Barker, J. R.; Francisco, J. S. J. Phys. Chem. A 2012, 116, 4712.
[29] Long, B.; Zhang, W.-J.; Long, Z.-W. Chin. J. Chem. Phys. 2011, 24, 419.
[30] Gonzalez, J.; Anglada, J. M. J. Phys. Chem. A 2010, 114, 9151.
[31] Medeiros, D. J.; Pimentel, A. S. J. Phys. Chem. A 2011, 115, 6357.
[32] Long, B.; Tan, X.-F.; Long, Z.-W.; Wang, Y.-B.; Ren, D.-S.; Zhang, W.-J. J. Phys. Chem. A 2011, 115, 6559.
[33] Long, B.; Zhang, W.-J.; Tan, X.-F.; Long, Z.-W.; Wang, Y.-B.; Ren, D.-S. Comput. Theor. Chem. 2011, 964, 248.
[34] Xu, X.; Goddard, W. A. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 15308.
[35] Xu, X.; Muller, R. P.; Goddard, W. A. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 3376.
[36] Long, B.; Tan, X.-F.; Ren, D.-S.; Zhang, W.-J. Chem. Phys. Lett. 2010, 492, 214.
[37] Vaida, V.; Kjaergaard, H. G.; Hintzel, P. E.; Donaldson, D. J. Science 2003, 299, 1566.
[38] Long, B.; Zhang, W.-J.; Tan, X.-F.; Long, Z.-W.; Wang, Y.-B.; Ren, D.-S. J. Phys. Chem. A 2011, 115, 1350.
[39] Iuga, C.; Alvarez-Idaboy, J. R.; Reyes, L.; Vivier-Bunge, A. J. Phys. Chem. Lett. 2010, 1, 3112.
[40] Luo, Y.; Maeda, S.; Ohno, K. Chem. Phys. Lett. 2009, 469, 57.
[41] Zhao, Y.-F.; Yang, Y.; Charles, M.; Charles, H. F. P.; Li, J.; Mei, D. H. J. Catal. 2011, 281, 199.
[42] Chang, C.-R.; Wang, Y.-G.; Li, J. Nano Res. 2011, 4, 131.
[43] Jørgensen, S.; Gross, A. J. Phys. Chem. A 2009, 113, 10284.
[44] Duncan, W. T.; Bell, R. L.; Truong, T. N. J. Comput. Chem. 1998, 19, 1039.
[45] Lu, Y.-X.; Wang, W.-L.; Wang, W.-N.; Liu, Y.-Y.; Zhang, Y. Acta Chim. Sinica 2010, 68, 1253. (卢彦霞, 王文亮, 王渭娜, 刘英英, 张越, 化学学报, 2010, 68, 1253.)
[46] Zheng, Y.; Zhu, Q.; Li, Z.-R.; Li, X.-Y. Acta Chim. Sinica 2013, 71, 81. (郑洋, 朱权, 李泽荣, 李象远, 化学学报, 2013, 71, 81.)
Outlines

/