Thermodynamic Investigation on Micellization of Cationic Gemini Surfactants with Nitrophenoxy Groups in Hydrophobic Chains
Received date: 2013-01-16
Online published: 2013-03-21
Supported by
Project supported by the National Natural Science Foundation of China (No. 21025313 and 21021003).
Isothermal titration microcalorimetry (ITC) is a powerful technique for acquiring thermodynamic information on the micellization process of surfactants. In typical ITC experiments, consecutive injections of small volume of a surfactant micellar solution into water contained in a sample cell are performed. The sample cell is maintained at a constant temperature and the heat of processes occurring during dilution is monitored for each injection and plotted as a function of surfactant concentration in the cell. The interpretation of experimental data obtained by ITC is necessarily based on models describing micellization process. So far, there are two main models to the thermodynamic analysis of the micellization process: the mass action model, considering micelles and unassociated monomers to be in an association-dissociation equilibrium and the phase separation model, which regards micelles as a separate phase at critical micelle concentration (CMC) and assumes that the micellization process is strongly cooperative. The phase separation model is the simplest model for describing micelle formation assuming that this process is akin to a separate phase-precipitation. Based on these two models, an ITC curve of observed enthalpy change versus surfactant concentration allows the determination of CMC and the enthalpy of micellization (ΔHmic) of a surfactant. Other thermodynamic parameters related to micellization, namely the free energy (ΔGmic), the entropy (ΔSmic) and the heat capacity of micellization (ΔCp,mic) can be calculated from the experimentally determined CMC and ΔHmic. In this paper, ITC and electrical conductivity were employed to investigate the micellization process of cationic gemini surfactants, N,N,N',N'-tetramethyl-N,N'-bis[10-(4-nitrophenoxy)alkyl]-1,6-hexanediammonium dibromide (Nm-6-mN, with m=8, 10 and 12, which are the numbers of carbon in the hydrocarbon chains), in aqueous solutions. Both phase separation model and mass action model were used to obtain a series of thermodynamic parameters. The results show that the obtained ΔHmic values based on the two models are very close, however, the obtained ΔGmic values based on the two models are not consistent. In addition, the ΔCp,mic of the micellization process is mainly from the dehydration contribution of hydrophobic alkyl chains of the surfactants, which means the nitrophenoxy group located in the hydrophobic chain still contacts with water after the micellization. Furthermore, the micellar aggregation number n can be obtained by employing the mass action model. The micellar aggregation number n decreases with the increase of the hydrophobic chain length. The reason is that the surfactant with longer hydrophobic chains prefers to form premicelles, leading to the decrease of the average aggregation number.
Huang Xu , Han Yuchun , Wang Yilin . Thermodynamic Investigation on Micellization of Cationic Gemini Surfactants with Nitrophenoxy Groups in Hydrophobic Chains[J]. Acta Chimica Sinica, 2013 , 71(06) : 897 -905 . DOI: 10.6023/A13010080
[1] Rosen, M. J. In Surfactants and Interfacial Phenomena, 3rd ed., John Wiley and Sons, New York, 2004, pp. 105~175.
[2] Bashford, M. T.; Woolley, E. M. J. Phys. Chem. 1985, 89, 3173.
[3] Woolley, E. M.; Bashford, M. T. 1986, 90, 3038.
[4] Kresheck, G. C. J. Phys. Chem. B 1998, 102, 6596.
[5] Kresheck, G. C. J. Am. Chem. Soc. 1998, 120, 10964.
[6] Li, Y.; Reeve, J.; Wang, Y.; Thomas, R. K.; Wang, J.; Yan, H. J. Phys. Chem. B 2005, 109, 16070.
[7] Bai, G.; Yan, H.; Thomas, R. K. Langmuir 2001, 17, 4501.
[8] Bai, G.; Wang, J.; Yan, H.; Li, Z.; Thomas, R. K. J. Phys. Chem. B 2001, 105, 3105.
[9] Jiang, N.; Li, P.; Wang, Y.; Wang, J.; Yan, H.; Thomas, R. K. J. Phys. Chem. B 2004, 108, 15385.
[10] Li, Y.; Li, P.; Dong, C.; Wang, X.; Wang, Y.; Yan, H.; Thomas, R. K. Langmuir 2006, 22, 42.
[11] Tanford, C. The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed., John Wiley and Sons, New York, 1980.
[12] Shinoda, K. J. Phys. Chem. 1977, 81, 1300.
[13] Gill, S. J.; Wadso, I. Proc. Natl. Acad. Sci. U. S. A. 1976, 73, 2955.
[14] Menger, F. M.; Keiper, J. S. Angew. Chem. Int. Ed. 2000, 39, 1906.
[15] Zana, R.; Xia, J. Gemini Surfactants: Synthesis, Interfacial and Solution-Phase Behavior, and Applications, Marcel Dekker, Inc., New York, 2004.
[16] Han, Y.; Wang, Y. Phys. Chem. Chem. Phys. 2011, 13, 1939.
[17] Steel, W. H.; Damkaci, F.; Nolan, R.; Walker, R. A. J. Am. Chem. Soc. 2002, 124, 4824.
[18] Beildeck, C. L.; Steel, W. H.; Walker, R. A. Langmuir 2003, 19, 4933.
[19] Steel, W. H.; Walker, R. A. Nature 2003, 424, 296.
[20] Huang, X.; Han, Y.; Wang, Y.; Wang, Y. J. Phys. Chem. B 2007, 111, 12439.
[21] Huang, X.; Wang, Y.; Dong, C.; Shen, H.-H.; Thomas, R. K. J. Colloid Interface Sci. 2008, 325, 114.
[22] Zana, R. Langmuir 1996, 12, 1208.
[23] Wang, X.; Wang, J.; Wang, Y.; Ye, J.; Yan, H.; Thomas, R. K. J. Phys. Chem. B 2003, 107, 11428.
[24] Zana, R. J. Colloid Interface Sci. 1980, 78, 330.
[25] Zana, R.; Benrraou, M.; Rueff, R. Langmuir 1991, 7, 1072.
[26] Zana, R.; Lévy, H. Colloids Surf. A: Physicochem. Eng. Aspects 1997, 127, 229.
[27] Li, Y.; Li, P.; Wang, J.; Wang, Y.; Yan, H.; Thomas, R. K. Langmuir 2005, 21, 6703.
[28] Paula, S.; Sues, W.; Tuchtenhagen, J.; Blume, A. J. Phys. Chem. 1995, 99, 11742.
[29] Beyer, K.; Leine, D.; Blume, A. Colloids Surf. B: Biointerfaces 2006, 49, 31.
[30] Johnson, I.; Olofsson, G.; Jönsson, B. J. Chem. Soc., Faraday Trans. 1 1987, 83, 3331.
[31] Király, Z.; Dekány, I. J. Colloid Interface Sci. 2001, 242, 214.
[32] Bhattacharya, S.; Haldar, J. Langmuir 2005, 21, 5747.
[33] Mosquera, V.; del Río, J. M.; Attwood, D.; García, M.; Jones, M. N.; Prieto, G.; Suarez, M. J.; Sarmiento, F. J. Colloid Interface Sci. 1998, 206, 66.
[34] Ford, D. M. J. Am. Chem. Soc. 2005, 127, 16167.
[35] Starikov, E. B.; Nordén, B. J. Phys. Chem. B 2007, 111, 14431.
[36] Rodríguez, J. R.; González-Pérez, A.; Del Castillo, J. L.; Czapkiewicz, J. J. Colloid Interface Sci. 2002, 250, 438.
[37] Muller, N. Langmuir 1993, 9, 96.
[38] Jolicoeur, C.; Philip, P. R. Can. J. Chem. 1974, 52, 1834.
[39] Bai, G.; Wang, J.; Yan, H.; Li, Z.; Thomas, R. K. J. Phys. Chem. B 2001, 105, 9576.
[40] Loladze, V. V.; Ermolenko, D. N.; Makhatadze, G. I. Protein Sci. 2001, 10, 1343.
[41] Bergqvist, S.; Williams, M. A.; O'Brien, R.; Ladbury, J. E. J. Mol. Biol. 2004, 336, 829.
[42] Spolar, R. S.; Livingstone, J. R.; Thomas Record, M. Biochemistry 1992, 31, 3947.
[43] Lee, B.; Richards, F. M. J. Mol. Biol. 1971, 55, 379.
[44] Richards, F. M. J. Mol. Biol. 1974, 82, 1.
[45] Garidel, P.; Hildebrand, A.; Neubert, R.; Blume, A. Langmuir 2000, 16, 5267.
[46] Majhi, P. R.; Blume, A. J. Phys. Chem. B 2002, 106, 10753.
[47] Majhi, P. R.; Blume, A. Langmuir 2001, 17, 3844.
[48] Mathias, J. H.; Rosen, M. J.; Davenport, L. Langmuir 2001, 17, 6148.
/
〈 |
|
〉 |