Article

Influence of Electrodeposition Post-Treatment on Microcosmic Performances in Dye-sensitized Solar Cells

  • Kou Dongxing ,
  • Liu Weiqing ,
  • Hu Linhua ,
  • Chen Shuanghong ,
  • Huang Yang ,
  • Dai Songyuan
Expand
  • a Key Laboratory of Novel Thin Film Solar Cells, Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031;
    b Key Laboratory of Nondestructive Testing of Ministry of Education, School of Measuring and Optical Engineering, Nanchang Hangkong University, Nanchang 330063

Received date: 2013-01-06

  Online published: 2013-04-03

Supported by

Project supported by the National Basic Research Program of China (Grant No. 2011CBA00700), the National High Technology Research and Development Program of China (Grant No. 2011AA050527), the National Natural Science Foundation of China (Grant No. 21003130, 61204075 and 21173228), Funds of the Hefei Institutes of Physical Science in Innovation Engineering (Grant No. Y05FCQ1125) and the China Postdoctoral Science Foundation (Grant Nos. 20110490835, 2012T50581).

Abstract

Over the last decade, different techniques had been employed to prepare nanoporous TiO2 electrode, aiming to improve the electron transport and depress electron recombination processes in dye-sensitized solar cells (DSCs). An effective method was a post-treatment of the TiO2 films in which an extra layer of TiO2 was grown onto the TiO2 nanoparticles constituting the films. Different explanations of the working principle of this coating had been reported. In the present work, the influence of surface modification of TiO2 films on microcosmic performances of DSCs was investigated. Research was developed by the post-treatment of TiO2 films using electrodeposition method. Ti4+ oxide films were deposited on TiO2 electrode by anodic oxidative hydrolysis of acidic aqueous TiCl3 solutions. The pH was adjusted to 2.2 and the rate of oxidation of Ti3+ at the anode was controlled by an almost constant anodic current using constant potential rectifier. The processes of electron recombination, transport and band edge movement were detected by intensity-modulated photocurrent spectroscopy (IMPS)/intensity-modulated photovoltage spectroscopy (IMVS) and electrochemical impedance spectroscopy (EIS). It was found that the capacitance of TiO2 electrode evidently increased with increasing electrodeposition time at high potentials due to the risen density of shallow traps. As the formation of small particles on the surface of TiO2 films and the enhancement of particle connections, the post-treatment with different electrodeposition time improved the charge injection and transport processes and depressed the electron recombination effectively. IMPS/IMVS measurements indicated that the effects of surface modification almost relied on light intensities, which would perform more prominent function at low intensities. Additionally, the open-circuit photovoltage (Voc) was found to be mainly effected by the conduction band edge shift and the variation of charge recombination process. With increasing electrodeposition time, the conduction band was ordinally positive shift due to the increase of surface charge, which contributed an improvement of short-circuit current (Jsc) but a limitation of Voc. Overall, an optimal modification time was needed to achieve a higher Jsc and Voc.

Cite this article

Kou Dongxing , Liu Weiqing , Hu Linhua , Chen Shuanghong , Huang Yang , Dai Songyuan . Influence of Electrodeposition Post-Treatment on Microcosmic Performances in Dye-sensitized Solar Cells[J]. Acta Chimica Sinica, 2013 , 71(05) : 777 -781 . DOI: 10.6023/A13010022

References

[1] Kou, D. X.; Liu, W. Q.; Hu, L. H.; Huang, Y.; Dai, S. Y.; Jiang, N. Q. Acta Phys. Sinica 2010, 59, 5857. (寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权, 物理学报, 2010, 59, 5857.)
[2] Li, J.; Kong, F. T.; Zhang, C. N.; Liu, W. Q.; Dai, S. Y. Acta Chim. Sinica 2010, 68, 1357. (李洁, 孔凡太, 张昌能, 刘伟庆, 戴松元, 化学学报, 2010, 68, 1357.)
[3] Huang, X. W.; Deng, J. Y.; Xu, L.; Shen, P.; Zhao, B.; Tan, S. T. Acta Chim. Sinica 2012, 70, 1604. (黄先威, 邓继勇, 许律, 沈平, 赵斌, 谭松庭, 化学学报, 2012, 70, 1604.)
[4] Oregan, B.; Gratzel, M. Nature 1991, 353, 737.
[5] Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C. Y.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W. G.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M. Science 2011, 334, 629.
[6] Liu, W. Q.; Kou, D. X.; Hu, L. H.; Huang, Y.; Jiang, N. Q.; Dai, S. Y. Acta Phys. Sinica 2010, 59, 5141. (刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元, 物理学报, 2010, 59, 5141.)
[7] Huang, Y.; Dai, S. Y.; Chen, S. H.; Hu, L. H.; Kong, F. T.; Kou, D. X.; Jiang, N. Q. Acta Phys. Sinica 2010, 59, 643. (黄阳, 戴松元, 陈双宏, 胡林华, 孔凡太, 寇东星, 姜年权, 物理学报, 2010, 59, 643.)
[8] Peter, L. M. Phys. Chem. Chem. Phys. 2007, 9, 2630.
[9] Park, J. H.; Kim, J. H.; Choi, C. J.; Kim, H.; Ahn, K. S. Molecular Crystals and Liquid Crystals 2012, 567, 19.
[10] Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphrybaker, R.; Muller, E.; Liska, P.; Vlachopoulos, N.; Gratzel, M. J. Am. Chem. Soc. 1993, 115, 6382.
[11] Hart, J. N.; Menzies, D.; Cheng, Y. B.; Simon, G. P.; Spiccia, L. Comptes Rendus Chimie 2006, 9, 622.
[12] Lee, C.; Lee, G. W.; Kang, W.; Lee, D. K.; Ko, M. J.; Kim, K.; Park, N. G. Bull. Korean Chem. Soc. 2010, 31, 3093.
[13] Lee, S. W.; Ahn, K. S. J. Phys. Chem. C 2012, 116, 21285.
[14] Lee, S.; Jun, Y.; Kim, K. J.; Kim, D. Sol. Energy Mater. Sol. Cells 2001, 65, 193.
[15] Shi, J. F.; Liang, J.; Peng, S. J.; Xu, W.; Pei, J.; Chen, J. Solid State Sci. 2009, 11, 433.
[16] Park, J. H.; Kim, J. Y.; Kim, J. H.; Choi, C. J.; Kim, H.; Sung, Y. E.; Ahn, K. S. J. Power Sources 2011, 196, 8904.
[17] Xu, W. W.; Dai, S. Y.; Fang, X. Q.; Hu, L. H.; Kong, F. T.; Pan, X.; Wang, K. J. Acta Phys. Sinica 2005, 54, 5943. (徐炜炜, 戴松元, 方霞琴, 胡林华, 孔凡太, 潘旭, 王孔嘉, 物理学报, 2005, 54, 5943.)
[18] Hagfeldt, A.; Gratzel, M. Chem. Rev. 1995, 95, 49.
[19] Hagfeldt, A.; Gratzel, M. Acc. Chem. Res. 2000, 33, 269.
[20] Zhu, K.; Kopidakis, N.; Neale, N. R.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2006, 110, 25174.
[21] Kavan, L.; Oregan, B.; Kay, A.; Gratzel, M. J. Electroanal. Chem. 1993, 346, 291.
[22] Wang, M.; Chen, P.; Humphry-Baker, R.; Zakeeruddin, S. M.; Gratzel, M. ChemPhysChem 2009, 10, 290.
[23] Wang, Q.; Zhang, Z.; Zakeeruddin, S. M.; Gratzel, M. J. Phys. Chem. C 2008, 112, 7084.
[24] Fisher, A. C.; Peter, L. M.; Ponomarev, E. A.; Walker, A. B.; Wijayantha, K. G. U. J. Phys. Chem. B 2000, 104, 949.
[25] Karuppuchamy, S.; Nonomura, K.; Yoshida, T.; Sugiura, T.; Minoura, H. Solid State Ionics 2002, 151, 19.
[26] Duffy, N. W.; Peter, L. M.; Wijayantha, K. G. U. Electrochem. Commun. 2000, 2, 262.
[27] Schlichthorl, G.; Huang, S. Y.; Sprague, J.; Frank, A. J. J. Phys. Chem. B 1997, 101, 8141.
[28] Liu, W. Q.; Kou, D. X.; Cai, M. L.; Hu, L. H.; Sheng, J.; Tian, H. J.; Jiang, N. Q.; Dai, S. Y. J. Phys. Chem. C 2010, 114, 9965.
[29] O'Regan, B. C.; Durrant, J. R.; Sommeling, P. M.; Bakker, N. J. J. Phys. Chem. C 2007, 111, 14001.
[30] Zhu, K.; Neale, N. R.; Miedaner, A.; Frank, A. J. Nano Lett. 2007, 7, 69.
[31] Guo, L.; Pan, X.; Wang, M.; Kou, D. X.; Cai, M.; Zhang, C. N.; Dai, S. Y. Acta Chim. Sinica 2011, 69, 767. (郭磊, 潘旭, 王猛, 寇东星, 蔡墨朗, 张昌能, 戴松元, 化学学报, 2011, 69, 767.)
[32] Hu, L. H.; Dai, S. Y.; Weng, J.; Xiao, S. F.; Sui, Y. F.; Huang, Y.; Chen, S. H.; Kong, F. T.; Pan, X.; Liang, L. Y.; Wang, K. J. J. Phys. Chem. B 2007, 111, 358.
Outlines

/