Review

All-solid-state Lithium Ion Battery: Research and Industrial Prospects

  • Liu Jin ,
  • Xu Junyi ,
  • Lin Yue ,
  • Li Jie ,
  • Lai Yanqing ,
  • Yuan Changfu ,
  • Zhang Jin ,
  • Zhu Kai
Expand
  • School of Metallurgical Science and Engineering, Central South University, Changsha 410083

Received date: 2013-02-02

  Online published: 2013-04-17

Supported by

Project supported by the National Natural Science Foundation of China (No. 51274239).

Abstract

All-solid-state lithium ion battery has become an important focus due to higher safety, higher energy density and wider operating temperature compared to the commercial lithium ion battery with liquid organic electrolyte. Research and development of solid electrolyte are the keys for the successful market penetration of all-solid-state lithium ion battery. Nowadays, three kinds of solid electrolytes, polyethylene-oxide (PEO) as well as its derivatives based polymer electrolyte, LiPON thin film electrolyte, and glassy sulfide electrolyte, are widely studied and open very interesting new application prospects of all-solid-state lithium ion battery. Three major parameters of ionic conductivity, compatibility with electrodes, and manufacturing costs are used to evaluate the application prospects of the electrolyte. Based on that, PEO and its derivatives have low fabricating cost and good compatibility with electrodes. However, because of low lithium ionic conductivity at ambient temperature, the batteries using this electrolyte needs to work at high temperatures with a temperature control system. LiPON is most suitable for ultra-thin-battery and micro-battery, which present long cycle life and good rate performance. But, it is difficult for large-scale production of the batteries due to high cost and complex manufacturing processes. Glassy sulfide electrolyte exhibits the highest lithium ion conductivity (10-3~10-2 S/cm at 25 ℃) among the three electrolytes, which is close to the level of liquid organic electrolyte and meet the requirement in industrial application. However, advanced manufacturing technologies of the battery are required for the improvement of contacts at electrolyte/electrodes interface. In recent years, all-solid-state battery samples and pilot production lines are available on the market. In this review, we summarize the research progresses and production technologies of batteries based on the three solid electrolytes, and attempt to explore the commercial applications of all-solid-state lithium ion battery.

Cite this article

Liu Jin , Xu Junyi , Lin Yue , Li Jie , Lai Yanqing , Yuan Changfu , Zhang Jin , Zhu Kai . All-solid-state Lithium Ion Battery: Research and Industrial Prospects[J]. Acta Chimica Sinica, 2013 , 71(06) : 869 -878 . DOI: 10.6023/A13020170

References

[1] Quartarone, E.; Mustarelli, P. Chem. Soc. Rev. 2011, 40, 2525.

[2] Cai, Y.; Li, Z.-J.; Zhang, H.-L.; Fan, X.; Zhang, S.-J. Acta Chim. Sinica 2010, 68, 1017. (蔡燕, 李在均, 张海朗, 范旭, 张锁江, 化学学报, 2010, 68, 1017.)

[3] Bouchet, R.; Maria, S.; Meziane, R.; Aboulaich, A.; Lienafa, L.; Bonnet, J. P.; Phan, T. N.; Bertin, D.; Gigmes, D.; Devaux, D.; Denoyel, R.; Armand, M. Nat. Mater. 2013, DOI: 10. 1038/NMAT 3602.

[4] Zhang, J.-B.; Lian, F.; Gao, X.-P.; Li, J.-G.; Fan, L.-Z.; He, X.-M. Sci. Sin. Chim. 2012, 42, 1252. (张建波, 连芳, 高学平, 李建刚, 范丽珍, 何向明, 中国科学: 化学, 2012, 42, 1252.)

[5] Xi, J.-Y.; Ma, X.-M.; Cui, M.-Z.; Tang, X.-Z. Acta Chim. Sinica 2005, 63, 401. (席靖宇, 马晓梅, 崔梦忠, 唐小真, 化学学报, 2005, 63, 401.)

[6] Ogawa, M.; Yoshida, K.; Harada, K. SEI Tech. Rev. 2012, 74, 88.

[7] Kang, Y.; Lee, W.; Hack, Suh D.; Lee, C. J. Power Sources 2003, 119121, 448.

[8] Fenton, D. E.; Parker, J. M.; Wright, P. V. Polymer 1973, 14, 589.

[9] Feuillade, G.; Perche, P. J. Appl. Electrochem. 1975, 5, 63.

[10] Armand, M. B.; Chavagno, J. B.; Dulot, M. J. Fast Ion Transport in Solids-electrode and Electrolytes Conference, North Holland Publishers Co., New York, 1979, pp. 131~134.

[11] Wright, P. V. Electrochim. Acta 1998, 43, 1137.

[12] Zhao, F.; Qian, X.-M.; Wang, E.-K.; Dong, S.-J. Prog. Chem. 2002, 14, 374. (赵峰, 钱新明, 汪尔康, 董绍俊, 化学进展, 2002, 14, 374.)

[13] Fullerton-Shirey, S. K.; Maranas, J. K. Macromolecules 2009, 42, 2142.

[14] Edman, L.; Ferry, A.; Doeff, M. M. J. Mater. Res. 2000, 15, 1950.

[15] He, D.; Cho, S. Y.; Kim, D. W.; Lee, C.; Kang, Y. Macromolecules 2012, 45, 7931.

[16] Ayd?n, H.; ?enel, M.; Erdemi, H.; Baykal, A.; Tülü, M.; Ata, A.; Bozkurt, A. J. Power Sources 2011, 196, 1425.

[17] Aihara, Y.; Kuratomi, J.; Bando, T.; Iguchi, T.; Yoshida, H.; Ono, T.; Kuwana, K. J. Power Sources 2003, 114, 96.

[18] Zhang, Z.; Jin, J.; Bautista, F.; Lyons, L.; Shariatzadeh, N.; Sherlock, D.; Amine, K.; West, R. Solid State Ionics 2004, 170, 233.

[19] Walkowiak, M.; Schroeder, G.; Gierczyk, B.; Waszak, D.; Osińska, M. Electrochem. Commun. 2007, 9, 1558.

[20] Krawiec, W.; Scanlon, J. L. G.; Fellner, J. P.; Vaia, R. A.; Vasudevan, S.; Giannelis, E. P. J. Power Sources 1995, 54, 310.

[21] Derrien, G.; Hassoun, J.; Sacchetti, S.; Panero, S. Solid State Ionics 2009, 180, 1267.

[22] Gu, D.-M.; Li, Y.-C.; Yang, L.; Xiao, Y. Acta Chim. Sinica 2010, 68, 2367. (顾大明, 李已才, 杨柳, 肖宇, 化学学报, 2010, 68, 2367.)

[23] Moreno, M.; Quijada, R.; Santa Ana, M. A.; Benavente, E.; Gomez-Romero, P.; González, G. Electrochim. Acta 2011, 58, 112.

[24] Do, N. S. T.; Schaetzl, D. M.; Dey, B.; Seabaugh, A. C.; Fullerton-Shirey, S. K. J. Phys. Chem. C 2012, 116, 21216.

[25] Przyluski, J.; Siekierski, M.; Wieczorek, W. Electrochim. Acta 1995, 40, 2101.

[26] Wu, H.; Cummings, O. T.; Wick, C. D. J. Phys. Chem. B 2012, 116, 14922.

[27] Ibrahim, S.; Yasin, S. M. M.; Nee, N. M.; Ahmad, R.; Johan, M. R. J. Non-Cryst. Solids 2012, 358, 210.

[28] Croce, F.; Persi, L.; Scrosati, B.; Serraino-Fiory, F.; Plichta, E.; Hendrickson, M. A. Electrochim. Acta 2001, 46, 2457.

[29] Gu, N.-Y.; Ao, H.; Pei, J.-J. Chem. J. Chin. Univ. 2012, 33, 1295. (古宁宇, 敖鹤, 裴建军, 高等学校化学学报, 2012, 33, 1295.)

[30] Tang, C. Y.; Hackenberg, K.; Fu, Q.; Ajayan, P. M.; Ardebili, M. Nano Lett. 2012, 12, 1152.

[31] Kim, S. K.; Kim, D. G.; Lee, A.; Sohn, H. S.; Wei, J. J.; Nguyen, N. A.; Mackay, M. E.; Lee, J. C. Macromolecules 2012, 45, 9347.

[32] Chinnam, P. R.; Wunder, S. L. J. Mater. Chem. A 2013, 1, 1731.

[33] Gozdz, A. S.; Scumutz, C. N.; Tarascon, J. M. US 5296318, 1994 [Chem. Abstr. 1994, 121, 413962].

[34] Zhu, Y.-M.; Ren, X.-F.; Li, N. Chemistry 2010, 12, 1073. (朱永明, 任雪峰, 李宁, 化学通报, 2010, 12, 1073.)

[35] Bates, J. B.; Dudney, N. J.; Gruzalski, R. A.; Choudhury, A.; Luck, C. F. Solid State Ionics 1992, 5356, 647

[36] Hong, T. K.; Taehong, M.; Chinho, P.; Sang, W. J.; Ho, Y. P. J. Power Sources 2013, doi: 10.1016/j.jpowersour.2012.12.109.

[37] Suzuki, N.; Inaba, T.; Shiga, T. Thin Solid Films 2012, 520, 1821.

[38] Barrau, B.; Ribes, M.; Maurin, M. J. Non-Cryst. Solids 1980, 37, 1.

[39] Wada, H.; Menetrier, M.; Levasseur, A.; Hagenmuller, P. Mater. Res. Bull. 1983, 18, 189.

[40] Aotani, N.; Iwamoto, K.; Takada, K.; Kondo, S. Solid State Ionics 1994, 68, 35.

[41] Hirai, K.; Tatsumisago, M.; Minami, T. Solid State Ionics 1995, 78, 269.

[42] Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. Solid State Ionics 2006, 177, 2721.

[43] Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M. Solid State Ionics 2000, 130, 97.

[44] Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A. Nat. Mater. 2011, 10, 682.

[45] Wang, F. M.; Hu, C. C.; Lo, S. C.; Wang, Y. Y.; Wan, C. C. Solid State Ionics 2009, 180, 405.

[46] Zhang, J. W.; Huang, X. B.; Wei, H.; Fu, J. W.; Huang, Y. W.; Tang, X. Z. J. Solid State Electrochem. 2012, 16, 101.

[47] Hayashia, A.; Minamia, K.; Ujiieb, S.; Tatsumisago, M. J. Non-Cryst. Solids 2010, 356, 2670.

[48] Hassoun, J.; Verrelli, R.; Reale, P.; Panero, S.; Mariotto, G.; Greenbaum, S.; Scrosati, B. J. Power Sources 2013, 229, 117.

[49] Hamon, Y.; Douard, A.; Sabary, F.; Marcel, C.; Vinatier, P.; Pecquenard, B.; Levaseur, A. Solid State Ionics 2006, 177, 257.

[50] Mascaraque, N.; Fierro, J. L. G.; Duran, A.; Munoz, F. Solid State Ionics 2013, 233, 73.

[51] Kobayashi, Y.; Seki, S.; Mita, Y.; Ohno, Y.; Miyashiro, H.; Charest, P.; Guerfi, A.; Zaghib, K. J. Power Sources 2008, 185, 542.

[52] Damen, L.; Hassoun, J.; Mastragostino, M.; Scrosati, B. J. Power Sources 2010, 195, 6902.

[53] Angulakshmi, N.; Nahm, K. S.; Nair, J. R.; Gerbaldi, C.; Bongiovanni, R.; Penazzi, N.; Stephan, A. M. Electrochim. Acta 2013, 90, 179.

[54] Oh, B.; Vissers, D.; Zhang, Z.; West, R.; Tsukamoto, H.; Amine, K. J. Power Sources 2003, 119121, 442.

[55] Niitani, T.; Shimada, M.; Kawamura, K.; Dokko, K.; Rho, Y. H.; Kanamura, K. Electrochem. Solid-State Lett. 2005, 8, A385.

[56] Koo, M.; Park, K.; Lee, S. H.; Suh, M.; Jeon, D. Y.; Choi, J. W.; Kang, K.; Lee, K. J. Nano Lett. 2012, 12, 4810.

[57] Sagane, F.; Shimokawa, R.; Sano, H.; Sakaebe, H.; Iriyama, Y. J. Power Sources 2013, 225, 245.

[58] Akridge, J. R.; Vourlis, H. Solid State Ionics 1986, 1819, 1082.

[59] Kim, J.; Eom, M.; Noh, S.; Shin, D. J. Power Sources 2012, doi: 10.1016/j.jpowersour.2012.12.049.

[60] Koji, K. Next-Gen Batteries Going All-Solid: Demand for Large Size Batteries in EVs and Stationary Use Driving Development. 2010, July 1, http://techon.nikkeibp.co.jp/article/HONSHI/20100628/ 183827/?P=5 (accessed Apr. 10, 2013).

[61] Kato, Y.; Kawamoto, K.; Kanno, R.; Hirayama, M. Electrochemistry 2012, 80, 749.

[62] Fish, J. S.; Li, C. P.; Fehribach, J. D.; Wolden, C. A.; Hayre, R. O.; Bunge, A. L.; Goodyer, C. E. Electrochim. Acta 2012, 83, 454.

[63] Takada, K.; Ohta, N.; Zhang, L. Q.; Fukuda, K.; Sakaguchi, I.; Ma, R. Z.; Osada, M.; Sasaki, T. Solid State Ionics 2008, 179, 1333.

[64] Ogawa, M.; Kanda, R.; Yoshida, K.; Uemura, T.; Harada, K. J. Power Sources 2012, 205, 487.

[65] Satoshi, O. Japanese Researchers Seeking to Print Out Li-polymer Battery, 2011, Jan 7, http://techon.nikkeibp.co.jp/english/NEWS_ EN/ 20100107/179028/ (accessed Jan. 20, 2013).

[66] Okubo, C. GS Caltex Exhibition of Thin Film All-solid-state Lithium ion Battery Used in Energy Harvesting, 2011, Mar, 8, http://china. nikkeibp.com.cn/news/econ/55518-20110307.html (accessed Apr. 6, 2013).

[67] Tsunenori, T. Idemitsu Showcases A6-size Laminated All-solid Li-ion Battery, 2010, Mar 5, http://techon.nikkeibp.co.jp/english/ NEWS_EN/20100305/180872/ (accessed Mar. 23, 2013).

[68] Kouji, K.; Hideyoshi, K.; Hiroki, Y. The First Step is New Materials to Boost Capacity, 2010, Feb 1, http://techon.nikkeibp.co.jp/article/ HONSHI/20100127/179674/?P=1 (accessed Mar. 19, 2013).

[69] Naoshige, S. Toyota Prototypes All-solid-state Battery With 5x Higher Output Density, 2012, Sept 26, http://techon.nikkeibp.co.jp/ english/NEWS_EN/20120926/241911/ (accessed Jan. 20, 2013).Katherine, B. Safer, Longer-Lasting Batteries for Cars, 2010, July 20, http://www.technologyreview.com/energy/25825/ (accessed Apr. 18, 2013).

Outlines

/