Article

Theoretical Study of Substituent Effects on Bond Dissociation Enthalpies in Lignite Model Compounds

  • Wang Xinhua ,
  • Feng Li ,
  • Cao Zexing ,
  • Liu Xiangchun ,
  • Tang Haiyan ,
  • Zhang Man
Expand
  • a School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116;
    b College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005

Received date: 2013-03-21

  Online published: 2013-04-23

Supported by

Project supported by the National Basic Research Program of China (No. 2012CB214901) and the National Natural Science Foundation of China (No. 51274197).

Abstract

Lignite is an abundant natural resource that is a potential source of clean fuel and value-added chemicals. The mechanisms by which thermal and catalytic treatments deconstruct lignite remain elusive, which is where quantum mechanical calculations can offer fundamental insights. In order to investigate the cleavage of C—O bridge bond, which is the critical step in the thermal decomposition of lignite, the α-O-4 and β-O-4 types of structural units are selected as lignite model compounds to calculate the C—O bond dissociation enthalpies using several kinds of density functional theory methods (B3PW91, B3P86, PBE1PBE, BMK, M06-2X and M05-2X) at 6-31-G(d,p) level. By the comparison between the results and the theoretical benchmark values provided by CBS-QB3 method, M05-2X functional was applied for the calculations on C—O bond dissociation enthalpies. The present results indicate that the C—O average bond dissociation enthalpies are 51.0 kcal/mol and 66.1 kcal/mol for the α-O-4 and β-O-4 types of model compounds, respectively. Local substituents have a great effect on the C—O bond dissociation enthalpies, the C—O bond dissociation enthalpies will decrease when the adjacent arene rings are substituted by electron donating groups (OH, OCH3 and CH3), while the results are opposite for the electron withdrawing groups such as carboxyl group. Then the substituent effects are deeply analyzed on the basis of the ground-state effect and radical effect. An electron donating group can stabilize the phenoxy radicals (radical effect), however, an electron withdrawing group has the opposite effect. In most cases, the radical effect is more important than the ground-state effect. Furthermore, there is a negligible correlation between the C—O bond distances and strengths, and the C—O bond dissociation enthalpies cannot be predicted so easily. Interestingly, the C—O bond dissociation enthalpies can be significantly influenced by the intramolecular hydrogen bond, if the intramolecular hydrogen bond still exists after the cleavage of the C—O bond, the bond dissociation enthalpies will be lower.

Cite this article

Wang Xinhua , Feng Li , Cao Zexing , Liu Xiangchun , Tang Haiyan , Zhang Man . Theoretical Study of Substituent Effects on Bond Dissociation Enthalpies in Lignite Model Compounds[J]. Acta Chimica Sinica, 2013 , 71(07) : 1047 -1052 . DOI: 10.6023/A13030318

References

[1] Thielemann, T.; Schmidt, S.; Peter Gerling, J. Int. J. Coal. Geol. 2007, 72, 1.
[2] Dong, L.-H.; Yuan, Q.; Yuan, H.-L. Fuel 2006, 85, 2402.
[3] Markic, M.; Sachsenhofer, R. F. Int. J. Coal. Geol. 1997, 33, 229.
[4] Beste, A.; Buchanan, A. C. J. Org. Chem. 2009, 74, 2837.
[5] Chakar, F. S.; Ragauskas, A. J. Ind. Crop. Prod. 2004, 20, 131.
[6] Chen, B.; Wei, X.-Y.; Yang, Z.-S.; Liu, C.; Fan, X.; Qing, Y.; Zong, Z.-M. Energy Fuels 2012, 26, 984.
[7] Dorrestijn, E.; Laarhoven, L. J. J.; Arends, I. W. C. E.; Mulder, P. J. Anal. Appl. Pyrol. 2000, 54, 153.
[8] Britt, P. F.; Buchanan, A. C.; Malcolm, E. A. J. Org. Chem. 1995, 60, 6523.
[9] Britt, P. F.; Buchanan, A. C.; Cooney, M. J.; Martineau, D. R. J. Org. Chem. 2000, 65, 1376.
[10] Britt, P. F.; Kidder, M. K.; Buchanan, A. C. Energy Fuels 2007, 21, 3102.
[11] Pratt, D. A.; Deheer, M. I.; Mulder, P.; Ingold, K. U. J. Am. Chem. Soc. 2001, 123, 5518.
[12] Feng, Y.; Liu, L.; Wang, J.-T.; Huang, H.; Guo, Q.-X. J. Chem. Inf. Comput. Sci. 2003, 43, 2005.
[13] Izgorodina, E. I.; Brittain, D. R. B.; Hodgson, J. L.; Krenske, E. H.; Lin, C. Y.; Namazian, M.; Coote, M. L. J. Phys. Chem. A 2007, 111, 10754.
[14] Menon, A. S.; Wood, G. P. F.; Moran, D.; Radom, L. J. Phys. Chem. A 2007, 111, 13638.
[15] Hemelsoet, K.; Speybroeck, V. V.; Waroquier, M. J. Phys. Chem. A 2008, 112, 13566.
[16] Fu, Y.; Liu, L.; Lin, B.-L.; Mou, Y.; Cheng, Y.-H.; Guo, Q.-X. J. Org. Chem. 2003, 68, 4657.
[17] Cheng, Y.-H.; Zhao, X.; Song, K.-S.; Liu, L.; Guo, Q.-X. J. Org. Chem. 2002, 67, 6638.
[18] Izgorodina, E. I.; Coote, M. L.; Radom, L. J. Phys. Chem. A 2005, 109, 7558.
[19] Blanksby, S. J.; Ellison, G. B. Acc. Chem. Res. 2003, 36, 255.
[20] Wu, W.-M.; Zhang, W.; Chen, M.-B.; Qiang, H.-F.; Shi, L.-W. Acta Chim. Sinica 2012, 70, 1145. (武文明, 张炜, 陈敏伯, 强洪夫, 史良伟, 化学学报, 2012, 70, 1145.)
[21] Tang, S.-Y.; Fu, Y.; Guo, Q.-X. Acta Chim. Sinica 2012, 70, 1923. (唐诗雅, 傅尧, 郭庆祥, 化学学报, 2012, 70, 1923.)
[22] Li, H.-Z.; Tao, W.; Gao, T.; Li, H.; Lü, Y.-H.; Su, Z.-M. Chem. J. Chin. Univ. 2012, 33, 346. (李鸿志, 陶委, 高婷, 李辉, 吕英华, 苏忠民, 高等学校化学学报, 2012, 33, 346.)
[23] Cao, C.-T.; Tan, Y.; Zhu, X.-Q. Sci. China, Chem. 2012, 42, 1491. (曹朝政, 谭跃, 朱晓晴, 中国科学: 化学, 2012, 42, 1491.)
[24] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B. GAUSSIAN 09, revision A. 02, Gaussian, Inc., Wallingford, CT, 2009.
[25] Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
[26] Boese, A. D.; Martin, J. M. L. J. Chem. Phys. 2004, 121, 3405.
[27] Hemelsoet, K.; Moran, D.; Van Speybroeck, V.; Waroquier, M.; Radom, L. J. Phys. Chem. A 2006, 110, 8942.
[28] Jarvis, M. W.; Daily, J. W.; Carstensen, H. H.; Dean, A. M.; Sharma, S.; Dayton, D. C.; Robichaud, D. J.; Nimlos, M. R. J. Phys. Chem. A 2011, 115, 428.
[29] Qi, C.; Lin, Q.-H.; Li, Y.-Y.; Pang, S.-P.; Zhang, R.-B. J. Mol. Struct. Theochem. 2010, 961, 97.
[30] Hu, W.; Zhang, C.; Wu, R.; Sun, Y.; Levine, A.; Feng, Z. Proc. Natl. Acad. Sci. U. S. A 2010, 107, 7455.
[31] Wu, Y.-D.; Lai, D. K. W. J. Org. Chem. 1996, 61, 7904.
[32] Liu, L.; Fu, Y.; Liu, R.; Li, R. Q.; Guo, Q.-X. J. Chem. Inf. Comput. Sci. 2004, 44, 652.
[33] Parker, V. D. J. Am. Chem. Soc. 1992, 114, 7458.
[34] Grabowski, S. J. J. Mol. Struct. 2001, 562, 137.
Outlines

/