Halide-Directed Synthesis of Coordination Polymers [Hg2X4(ppt)]n (X=I and Br, ppt=1-(4-Pyridyl)-pyridinium-4-thiolate) with Different One-Dimensional Chain Structures and Third-Order Nonlinear Optical Properties
Received date: 2013-03-14
Online published: 2013-05-02
Supported by
Project supported by the National Natural Science Foundation of China (No. 21171124) and the State Key Laboratory of Organometallic Chemistry of Shanghai Institute of Organic Chemistry (No. 201201006).
Solvothermal reactions of HgX2 (X=I, Br) with 4,4'-dipyridyl disulfide (dpds) in acetonitrile gave rise to two one-dimensional polymers [Hg2X4(ppt)]n [ppt=1-(4-pyridyl)-pyridinium-4-thiolate; X=I (1), Br (2)]. In the structures of 1 and 2, the ppt ligand was in situ generated from the Hg(II)-engaged cleavage of both S—S and S—C bonds of dpds and the subsequent rearrangement reactions under solvothermal conditions. Although compounds 1 and 2 have similar chemical formula, 1 crystallizes in the orthorhombic space group Ima2 and holds a 1D non-centrosymmetric zigzag chain while 2 crystallizes in the orthorhombic space group Pnma and has a 1D centrosymmetric zigzag chain. Such a difference in structural symmetry between 1 and 2 may be due to the fact that the radius of iodide is larger than that of bromide. The third-order nonlinear optical (NLO) behaviours of 1 and 2 in DMF were investigated by using femtosecond degenerate four-wave mixing technique. Compound 1 exhibited relatively strong NLO responses while compound 2 showed nothing. Such a remarkable difference in the NLO property may be due to the fact that iodide is a better electron donor than bromide, which allows more efficient spin-orbital coupling, and facilitates intersystem crossing and more efficient usage of triplet excited state absorption.
Ni Chunyan , Chen Yang , Li Duanxiu , Ren Zhigang , Li Hongxi , Sun Zhenrong , Lang Jianping . Halide-Directed Synthesis of Coordination Polymers [Hg2X4(ppt)]n (X=I and Br, ppt=1-(4-Pyridyl)-pyridinium-4-thiolate) with Different One-Dimensional Chain Structures and Third-Order Nonlinear Optical Properties[J]. Acta Chimica Sinica, 2013 , 71(06) : 906 -912 . DOI: 10.6023/A13030272
[1] (a) Chen, X. M.; Tong, M. L. Acc. Chem. Res. 2007, 40, 162;
(b) Zhang, J. P.; Zhang, Y. B.; Lin, J. B.; Chen, X. M. Chem. Rev. 2012, 112, 1001;
(c) Wang, C.; Zhang, T.; Lin, W. B. Chem. Rev. 2012, 112, 1084;
(d) Cohen, S. M. Chem. Rev. 2012, 112, 970.
[2] (a) Zhao, H.; Qu, Z. R.; Ye, H. Y.; Xiong, R. G. Chem. Soc. Rev. 2008, 37, 84;
(b) Goto, Y.; Sato, H.; Shinkai, S.; Sada, K. J. Am. Chem. Soc. 2008, 130, 14354;
(c) Zhang, X. M. Coord. Chem. Rev. 2005, 249, 1201;
(d) Wang, X. Y.; Wang, Z. M.; Gao, S. Chem. Commun. 2007, 1127.
[3] (a) Papaefstathiou, G. S.; Zhong, Z. M.; Geng, L.; MacGillivray, L. R. J. Am. Chem. Soc. 2004, 126, 9158;
(b) Chu, Q. L.; Swenson, D. C.; MacGillivray, L. R. Angew. Chem., Int. Ed. 2005, 44, 3569;
(c) Han, Y. F.; Lin, Y. J.; Jia, W. G.; Wang, G. L.; Jin, G. X. Chem. Commun. 2008, 1807;
(d) Georgiev, I. G.; MacGillivray, L. R. Chem. Soc. Rev. 2007, 36, 1239;
(e) Vittal, J. J. Coord. Chem. Rev. 2007, 251, 1781;
(f) Mir, M. H.; Koh, L. L.; Tan, G. K.; Vittal, J. J. Angew. Chem., Int. Ed. 2010, 49, 390;
(g) Liu, D.; Ren, Z. G.; Li, H. X.; Lang, J. P.; Li, N. Y.; Abrahams, B. F. Angew. Chem., Int. Ed. 2010, 49, 4767;
(h) Liu, D.; Lang, J. P.; Abrahams, B. F. Chem. Commun. 2013, 49, 2682.
[4] (a) Zhu, H. B.; Gou, S. H. Coord. Chem. Rev. 2011, 255, 318;
(b) Horikoshi, R.; Mochida, T. Coord. Chem. Rev. 2006, 250, 2595;
(c) Zhu, Q.; Sheng, T.; Tan, C.; Hu, S.; Fu, R.; Wu, X. Inorg. Chem. 2011, 50, 7618;
(d) Carballo, R.; Covelo, B.; Fernández-Hermida, N.; Lago, A. B.; Vázquez-López, E. M. CrystEngComm 2009, 11, 817;
(e) Houng, S. Y.; Jung, H. Y.; Jae, I. K.; Eui, K. K.; Chang, S. H. Eur. J. Inorg. Chem. 2008, 3123;
(f) Li, H. X.; Wu, H. Z.; Zhang, W. H.; Ren, Z. G.; Zhang, Y.; Lang, J. P. Chem. Commun. 2007, 5052.
[5] (a) Han, L.; Bu, X.; Zhang, Q.; Feng, P. Inorg. Chem. 2006, 45, 5736;
(b) Wang, J.; Zhang, Y. H.; Li, H. X.; Lin, Z. J.; Tong, M. L. Cryst. Growth Des. 2007, 7, 2352;
(c) Wang, J.; Zheng, S. L.; Hu, S.; Zhang, Y. H.; Tong, M. L. Inorg. Chem. 2007, 46, 795;
(d) Ma, L. F.; Wang, Y. Y.; Wang, L. Y.; Lu, D. H.; Batten, S. R.; Wang, J. G. Cryst. Growth Des. 2009, 9, 2036;
(e) Ma, L. F.; Wang, L. Y.; Du, M. CrystEngComm 2009, 11, 2593.
[6] Chen, Y.; Wang, Z. O.; Ren, Z. G.; Li, H. X.; Li, D. X.; Liu, D.; Zhang, Y.; Lang, J. P. Cryst. Growth Des. 2009, 9, 4963.
[7] (a) Lang, J. P.; Xu, Q. F.; Zhang, W. H.; Li, H. X.; Ren, Z. G.; Chen, J. X.; Zhang, Y. Inorg. Chem. 2006, 45, 10487;
(b) Tang, X. Y.; Li, H. X.; Chen, J. X.; Ren, Z. G.; Lang, J. P. Coord. Chem. Rev. 2008, 252, 2026.
[8] Nakamoto, K. In Infrared and Raman Spectra of Inorganic and Coordination Compounds, 4th ed., Wiley, New York, 1986.
[9] Chen, J. X.; Zhang, W. H.; Tang, X. Y.; Ren, Z. G.; Zhang, Y.; Lang, J. P. Inorg. Chem. 2006, 45, 2568.
[10] Lü, X. Q.; Pan, M.; He, J. R.; Cai, Y. P.; Kang, B. S.; Su, C. Y. CrystEngComm 2006, 8, 827.
[11] Svensson, P. H.; Kloo, L. Inorg. Chem. 1999, 38, 3390.
[12] Dean, P. A. W.; Vittal, J. J.; Wu, Y. Inorg. Chem. 1994, 33, 2180.
[13] Wang, X. F.; Lv, Y.; Okamura, T. A.; Kawaguchi, H.; Wu, G.; Sun, W. Y.; Ueyama, N. Cryst. Growth Des. 2007, 7, 1125.
[14] Mbogo, S. A.; Lobana, T. S.; McWhinnie, W. R.; Greaves, M. R.; Hamor, T. A. J. Organomet. Chem. 1990, 395, 167.
[15] (a) Yang, Y.; Samoc, M.; Prasad, P. N. J. Chem. Phys. 1991, 94, 5282;
(b) Orezyk, M. E.; Samoc, M.; Swiatkiewicz, J.; Prasad, P. N. J. Chem. Phys. 1993, 98, 2524;
(c) Jenekhe, S. A.; Lo, S. K.; Flom, S. R. Appl. Phys. Lett. 1989, 54, 2524;
(d) Mandal, B. K.; Bihari, B.; Sinha, A. K.; Kamath, M.; Chen, L. Appl. Phys. Lett. 1995, 66, 932.
[16] (a) Swiatkiewicz, J.; Prasad, P. N.; Reinhardt, B. A. Opt. Commun. 1998, 157, 135;
(b) Kim, O. K.; Lee, K. S.; Woo, H. Y.; Kim, K. S.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N. Chem. Mater. 2000, 12, 284.
[17] (a) Lü, X.; Chen, X.; Ren. Z. G.; Lang, J. P.; Liu, D.; Sun, Z. R. Dalton Trans. 2011, 40, 7983;
(b) Ren, Z. G.; Sun, S.; Dai, M.; Wang, H. F.; Lü, C. N.; Lang, J. P.; Sun, Z. R. Dalton Trans. 2011, 40, 8391;
(c) Zhang, W. H.; Chen, J. X.; Li, H. X.; Wu, B.; Tang, X. Y.; Ren, Z. G.; Zhang, Y.; Lang, J. P.; Sun, Z. R. J. Organomet. Chem. 2005, 690, 394.
[18] Zhai, T.; Lawson, C. M.; Gale, D. C.; Gray, G. M. Opt. Mater. 1995, 4, 455.
[19] (a) Shi, S.; Lin, Z.; Mo, Y.; Xin, X. Q. J. Phys. Chem. 1996, 100, 10696;
(b) Shi, S.; Ji, W.; Tang, S. H.; Lang, J. P.; Xin, X. Q. J. Am. Chem. Soc. 1994, 116, 3615;
(c) Zhang, C.; Song, Y. L.; Wang, X. Coord. Chem. Rev. 2007, 251, 1111;
(d) Shi, S. In Optoelectronic Properties of Inorganic Compounds, Eds.: Roundhill, D. M.; Fackler, J. P. Jr., Plenum Press, New York, 1998, pp. 55~105;
(e) Zhang, Q. F.; Xiong, Y. N.; Lai, T. S.; Ji, W.; Xin, X. Q. J. Phys. Chem. B 2000, 104, 3446.
[20] Sheldrick, G. M. Acta Cryst. 2008, A64, 112.
/
〈 |
|
〉 |