Communications

A Facile One Pot Synthesis of Alq3@SiO2

  • Liu Xiaoyun ,
  • Guo Song ,
  • Wu Yuling ,
  • Miao Yanqin ,
  • Du Xiaogang ,
  • Zhou Hefeng ,
  • Wang Hua ,
  • Guo Kunpeng
Expand
  • a Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Taiyuan 030024;
    b Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024;
    c College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024

Received date: 2013-03-18

  Online published: 2013-05-16

Supported by

Project supported by International Science & Technology Cooperation Program of China (No. 2012DFR50460) and the National Natural Scienti?c Foundation of China (Nos. 21071108, 21101111, 61274056, 61205179).

Abstract

From the view point of practical application, one thorny problem in organic light emitting diode (OLED) devices is how to protect the inner materials from being eroded by oxygen and moisture, and to undertake sufficient long-term stability. Alq3 is the earliest and widely used organometallic material as an electron transport layer and light emitting layer in OLED, undoubtedly, improving its photochemical stability via coating it with materials that possess anti-oxygen and anti-water characters is one of cost-effective ways. Motivated by this, here, we demonstrate one pot synthesis of Alq3@SiO2 with uniform SiO2 covering. To obtain the optimized core-shell Alq3@SiO2 particle, a mixture of 8-hydroxyquinoline (6 mmol), 1 mL Et3N and 2 mL deionized water was dissolved in 120 mL ethanol and then heated to 70 ℃, a solution of Al2(SO4)3·18H2O (1 mmol) in 5 mL water and a solution of tetraethylorthosilicate (TEOS) (2 mmol) in 5 mL ethanol were added dropwise at the same time, respectively. The mixture was allowed to react at 70 ℃ for about 5 h. Then, a green precipitate was obtained, and purified by washing with water and ethanol. The scanning electron microscope (SEM) and transmission electron microscope (TEM) were employed to characterize the morphology of the as-synthesized Alq3@SiO2 particles, which exhibited better results than previous reported. From the measurement of UV-Vis and PL spectra we can see the Alq3@SiO2 we have produced exhibited similar absorption and emission profile compared to pristine Alq3, which is beneficial for future application in OLED because it is almost not change the optical property of Alq3. The prepared principle of Alq3@SiO2 can be assigned to the plausible Cage Effect of Et3N embraced Lewis acid Alq3, and a further Et3N catalytic hydrolysis of TEOS to produce SiO2 on the surface of formed Alq3. Note that Et3N used in this case is also acted as Alq3 morphology protective agent during TEOS hydrolysis. This work provides a facile and large scale preparation of Alq3@SiO2 for future improving the long-term stability of OLED devices.

Cite this article

Liu Xiaoyun , Guo Song , Wu Yuling , Miao Yanqin , Du Xiaogang , Zhou Hefeng , Wang Hua , Guo Kunpeng . A Facile One Pot Synthesis of Alq3@SiO2[J]. Acta Chimica Sinica, 2013 , 71(07) : 1017 -1021 . DOI: 10.6023/A13030298

References

[1] Reineke, S.; Lindner, F.; Schwartz, G.; Seidler, N.; Walzer, K.; Lüssem, B.; Leo, K. Nature 2009, 459, 234.
[2] Yamae, K.; Tsuji, H.; Kittichungchit, V.; Matsuhisa, Y.; Hayashi, S.; Ide, N.; Komoda, Y. SID Int. Symp. Dig. Tech. Pap. 2012, 43, 694.
[3] Han, C.-W.; Kim, K.-M.; Bae, S.-J.; Choi, H.-S.; Lee, J.-M.; Kim, T.-S.; Tak, Y.-H.; Cha, S.-Y.; Ahn, B.-C. SID Int. Symp. Dig. Tech. Pap. 2012, 43, 279.
[4] Wei, F. F.; Wang, H.; Xu, Y.; Hou, J. X.; Zhou, H. F.; Xu, B. S. J. Synth. Cryst. 2009, 100, 9731. (卫芳芳, 王华, 徐阳, 侯建新, 周禾丰, 许并社, 人工晶体学报, 2009, 100, 9731.)
[5] Ko, Y. W.; Chung, C.-H.; Lee, J. H.; Kim, Y.-H.; Sohn, C.-Y.; Kim, B.-C.; Hwang, C.-S.; Song, Y.-H.; Lim, J.; Ahn, Y.-J. Thin Solid Films 2003, 426, 246.
[6] Chang, C.-W.; Kao, Y.-T.; Diau, E. W.-G. Chem. Phys. Lett. 2003, 374, 110.
[7] Garbuzov, D. Z.; Bulović, V.; Burrows, P. E.; Forrest, S. R. Chem. Phys. Lett. 1996, 249, 433.
[8] Kepler, R. G.; Beeson, P. M.; Jacobs, S. J.; Anderson, R. A.; Sinclair, M. B.; Valeneia, V. S.; Cahill, P. A. Appl. Phys. Lett. 1995, 66, 3618.
[9] Jiang, H.; Liu, Y. Q.; Wu, X.; Zhang, Y. A.; Jin, L. P. Photographic Science and Photochemistry 2002, 20, 149. (姜华, 刘云圻, 武霞, 张永安, 金林培, 感光科学与光化学, 2002, 20, 149.)
[10] Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
[11] Krieg, T.; Petr, A.; Barkleit, G.; Dunsch, L. Appl. Phys. Lett. 1999, 74, 3639.
[12] Aziz, H.; Xu, G. J. Phys. Chem. B 1997, 101, 4009.
[13] Aziz, H.; Popovic, Z. D. Chem. Mater. 2004, 16, 4522.
[14] Zhang, X. W.; Hu, Q. Acta Phys. Sin. 2012, 20, 207802. (张新稳, 胡琦, 物理学报, 2012, 20, 207802.)
[15] Papadimitrakopoulos, F.; Zhang, X.-M.; Thomsen, D. L.; Higginson, K. A. Chem. Mater. 1996, 8, 1363.
[16] You, X. G.; He, R.; Gao, F.; Shao, J.; Pan, B. F.; Cui, D. X. Acta Chim. Sinica 2007, 65, 561. (尤晓刚, 贺蓉, 高峰, 邵君, 潘碧峰, 崔大祥, 化学学报, 2007, 65, 561.)
[17] Wu, C. L.; Xu, Q. H. Langmuir. 2009, 25, 9441.
[18] Liu, H. F.; Kong, F. J.; Rao, Y. Y.; Dong, J.; Qian, W. P. Acta Chim. Sinica 2010, 68, 865. (刘浩富, 孔凡娟, 饶艳英, 董健, 钱卫平, 化学学报, 2010, 68, 865.)
[19] Liu, S. H.; Han, M. Y. Adv. Funct. Mater. 2005, 15, 961.
[20] Yin, Y. D.; Lu, Y.; Sun, Y. G.; Xia, Y. N. Nano Lett. 2002, 2, 427.
[21] Dohnalová, K.; Poddubny, A. N.; Prokofiev, A. A.; DAM, W.; Umesh, C. P.; Paulusse, J. M. J.; Zuilhof, H.; Gregorkiewica, T. Light: Sci. Appl. 2013, 2, 47.
[22] Zhang, J. P.; Wang, H.; Zhang, C.; Song, C. L.; Li, J.; Hao, Y. Y.; Zhou, H. F.; Xu, B. S. Funct. Mater. 2011, 1001. (张俊萍, 王华, 张存, 宋春丽, 李娟, 郝玉英, 周禾丰, 许并社, 功能材料, 2011, 1001.)
[23] Stöber, W.; Fink, A.; Bohn, E. J. Colloid Interface Sci. 1968, 26, 62.
[24] Anne, A. P.; Leon, I.; Zharov, I. Langmuir 2013, 29, 3749.
[25] Sun, J. Y.; Wang, Z. K.; Lim, H. S.; Ng, S. C.; Kuok, M. H.; Tran, T. T.; Lu, X. M. ACS Nano 2010, 12, 7692.
Outlines

/