Review

Research Progress on Pt-Based Anode Catalysts in the Direct Methanol Fuel Cell

  • Wang Zonghua ,
  • Shi Guoyu ,
  • Xia Jianfei ,
  • Zhang Feifei ,
  • Xia Yanzhi ,
  • Li Yanhui ,
  • Xia Linhua
Expand
  • a Laboratory of Fiber Materials and Modern Textile, The Growing Base for State Key Laboratory, Qingdao University, Qingdao, 266071;
    b College of Chemical and Environment Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qingdao University, Qingdao 266071

Received date: 2013-03-10

  Online published: 2013-06-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 20975056, 81102411, 21275082), the Natural Science Foundation of Shandong Province (Nos. ZR2011BZ004, ZR2011BQ005), the Japan Society for the Promotion of Science and National Natural Science Foundation of China under the Japan-China Scientific Cooperation Program (No. 21111140014), the State Key Laboratory of Analytical Chemistry for Life Science (No. SKLACLS1110) and the National Key Basic Research Development Program of China (973 special preliminary study plan, No. 2012CB722705).

Abstract

In the past decades, fuel cells have emerged as an ideal device for energy storage and conversion owing to their high-energy conversion efficiency and low pollutant emission. Among various fuel cells, direct methanol fuel cells (DMFCs) appear to be one of the most promising systems because of their low operating temperatures, high energy density and easy transportation. However, it is known that the widespread commercial application of these cells is hindered by the high cost due to the exclusive use of platinum and platinum alloy catalysts. Thus, it is of great scientific and practical importance to exploit relatively inexpensive and highly active electrocatalysts for methanol oxidation. Although the utilization of non-noble catalysts may bring cost reduction to a certain degree, the excessively low performance is far below the commercial standard. Additionally, the formation and accumulation of intermediate species, such as COad and CHOad, which strongly adsorbed on the Pt surface, can substantially limit the efficience of the catalyst. Two main mechanisms are widely accepted to explain this improved tolerance to CO. As to the bifunctional mechanism model, a second metal can provide oxygenated species at lower potentials for oxidative removal of adsorbed CO. According to the intrinsic or ligand mechanism, the integrated metal modifies the electronic structure of Pt atoms, lowering the adsorption energy of COads and facilitating the oxidation of COads at a lower potential. Therefore, it seems that the modification or optimization based on monometallic Pt catalyst may be more practical. To our best understanding, the macroscopic structure of the catalyst plays a significant role in determining its intrinsic electronic construction. Hence, it is reasonable to improve the performance of the catalyst through monitoring its macroscopic properties to change the microscopic structure. In this paper, recent research progresses on the various approaches for the performance elevation of the anode catalyst have been summarized, mainly focusing on the composition, the morphology and the granularity. Especially the modification mechanisms have also been discussed.

Cite this article

Wang Zonghua , Shi Guoyu , Xia Jianfei , Zhang Feifei , Xia Yanzhi , Li Yanhui , Xia Linhua . Research Progress on Pt-Based Anode Catalysts in the Direct Methanol Fuel Cell[J]. Acta Chimica Sinica, 2013 , 71(9) : 1225 -1238 . DOI: 10.6023/A13030262

References

[1] Wen, Z. H.; Juan, L.; Li, J. H. Adv. Mater. 2008, 20, 743.
[2] Martinez-Huerta, M. V.; Rodriguez, J. L.; Tsiouvaras, N. Chem. Mater. 2008, 20, 4249.
[3] Kwon, Y. H.; Kim, S. C.; Lee, S. Y. Macromolecules 2009, 42, 5244.
[4] Zhang, H. M.; Zhou, W. Q.; Du, Y. K.; Yang, P.; Xu, J. K. Acta Chim. Sinica 2010, 68, 2529. (张红梅, 周卫强, 杜玉扣, 杨平, 徐景坤, 化学学报, 2010, 68, 2529.)
[5] Tong, H.; Zhang, Y. L.; Zhu, J. J.; Zhang, X. G.; He, W. Acta Chim. Sinica 2012, 70, 1159. (佟浩, 张艳玲, 朱佳佳, 张校刚, 何卫, 化学学报, 2012, 70, 1159.)
[6] Li, Y. M.; Tang, L. H.; Li, J. H. Electrochem. Commun. 2009, 11, 846.
[7] Zhao, Y. C.; Zhan, L.; Tian, J. N.; Nie, S. L.; Ning, Z. Electrochim. Acta 2011, 56, 1967.
[8] Santhosh, P.; Gopalan, A.; Lee, K. P. J. Catal. 2006, 238, 177.
[9] Dang, D.; Gao, H. L.; Peng, L. J.; Su, Y. L.; Liao, S. J.; Wang, Y. Acta Phys.-Chim. Sin. 2011, 27, 2380. (党岱, 高海丽, 彭良进, 苏允兰, 廖世军, 王晔, 物理化学学报, 2011, 27, 2380.)
[10] Zhu, J.; Cheng, F. Y.; Tao, Z. L.; Chen, J. J. Phys. Chem. C 2008, 112, 6337.
[11] Jeon, M. K.; Daimon, H.; Lee, K. R.; Nakahara, A.; Woo, S. I. Electrochem. Commun. 2007, 9, 2692.
[12] Wu, G.; Swaidan, R.; Li, D.; Li. N. Electrochim. Acta 2008, 53, 7622.
[13] Wu, Y. N.; Liao, S. J.; Guo, H. F.; Hao, X. Y. J. Power Sources 2013, 224, 66.
[14] Hamel, C.; Garbarino, S. B.; Irissou, E. R.; Bichat, M. P.; Guay, D. J. Phys. Chem. C 2010, 114, 18931.
[15] Wang, Y. S.; Yang, S. Y.; Li, S. M.; Tien, H. W.; Hsiao, S. T.; Liao, W. H.; Liu, C. H.; Chang, K. H.; Ma, C. C.; Hu, C. C. Electrochim. Acta 2013, 87, 261.
[16] Zhou, C.; Peng, F.; Wang, H.; Yu, H.; Peng, C.; Yang, J. Electrochem. Commun. 2010, 12, 1210.
[17] Chetty, R.; Xia, W.; Kundu, S.; Bron, M.; Reinecke, T.; Schuhmann, W.; Muhler, M. Langmuir 2009, 25, 3853.
[18] Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K.; Uchida, H.; Watanabe, M. J. Phys. Chem. B 2006, 110, 23489.
[19] Lamy, C.; Leger, J. M.; Srinivasan, S. Modern Aspects of Electrochem. 2001, 34, 55.
[20] Watanabe, M.; Motoo, S. J. Electroanal. Chem. 1975, 60, 267.
[21] Koper, M. T.; Shubina, T. E.; Santen, R. A. J. Phys. Chem. B 2002, 106, 691.
[22] Alayoglu, S.; Zavalij, P.; Eichhorn, B.; Wang, Q.; Frenkel, A. I.; Chupas, P. ACS Nano 2009, 3, 3127.
[23] Godoi, D. R. M.; Perez, J.; Villullas, H. M. J. Phys. Chem. C 2009, 113, 8518.
[24] Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810.
[25] Wang, D.; Zhuang, L.; Lu, J. T. J. Phys. Chem. C 2007, 111, 16416.
[26] Bock, C.; Blakely, M. A.; MacDougall, B. Electrochim. Acta 2005, 50, 2401.
[27] Mpourmpakis, G.; Andriotis, A. N.; Vlachos, D. G. Nano Lett. 2010, 10, 1041.
[28] Pitois, A.; Davies, J. C.; Pilenga, A.; Pfrang, A. J. Catal. 2009, 265, 199.
[29] Koper, M. T. M.; Shubina, T. E.; van Santen, R. A. J. Phys. Chem. B 2002, 106, 686.
[30] Hwang, B. J.; Sarma, L. S.; Chen, J. M.; Chen, C. H.; Shih, S. C.; Wang, G. R.; Liu, D. G.; Lee, J. F.; Tang, M. T. J. Am. Chem. Soc. 2005, 127, 11140.
[31] Xu, D.; Liu, Z. P.; Yang, H. Z.; Liu, Q. S.; Zhang, J.; Fang, J. Y.; Zou, S. Z.; Sun, K. Angew. Chem., Int. Ed. 2009, 48, 4217.
[32] Xu, J. B.; Hua, K. F.; Sun, G. Z.; Wang, C.; Lv, X. Y.; Wang, Y. J. Electrochem. Commun. 2006, 8, 982.
[33] Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Nano Lett. 2010, 10, 638.
[34] Tritsaris, G. A.; Rossmeisl, J. J. Phys. Chem. C 2012, 116, 11984.
[35] Wakisaka, M.; Mitsui, S.; Hirose, Y.; Kawashima, K. J. Phys. Chem. B 2006, 110, 23489.
[36] Antolini, E.; Salgado, J. R. C.; González, E. R. Appl. Catal. B: Environ. 2006, 63, 137.
[37] Cui, X. Z.; Shi, J. L.; Zhang, L. X.; Ruan, M. L.; Gao, J. H. Carbon 2009, 47, 186.
[38] Watanabe, M.; Zhu, Y. M.; Uchida, H. J. Phys. Chem. B 2000, 104, 1762.
[39] Park, K. W.; Choi, J. H.; Kwon, B. K.; Lee, S. A.; Sung, Y. E. J. Phys. Chem. B 2002, 106, 1869.
[40] Gasparotto, L. H. S.; Ciapinab, E. G.; Cantanec, D. A.; Gomes, J. F. Electrochim. Acta 2013, 104, 358.
[41] Cooper J. S.; McGinn P. J. J. Power Sources 2006, 163, 330.
[42] Mukerjee, S.; Urian, R. C.; Lee, S. J.; Ticcianelli, E.; McBreen, J. J Electrochem. Soc. 2004, 151, A1094.
[43] Song, C. J.; Khanfar, M.; Pickup, P. G. J. Appl. Electrochem. 2006, 36, 339.
[44] Wang, Z. B.; Yin, G. P.; Lin, Y. G. J. Power Sources 2007, 170, 242.
[45] Park, K. W.; Choi, J. H.; Ahn, K. S.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 5989.
[46] Liang, Y. M.; Zhang, H. M.; Tian, Z. Q.; Zhu, X. B.; Wang, X. L.; Yi, B. L. J. Phys. Chem. B 2006, 110, 7828.
[47] Yang, L. X.; Allen, R. G.; Scott, K.; Christenson, P.; Roy, S. J. Power Sources 2004, 137, 257.
[48] Liang, Y. M.; Zhang, H. M.; Zhong, H. X.; Zhu, X. B.; Tian, Z. Q.; Xu, D. Y.; Yi, B. L. J. Catal. 2006, 238, 468.
[49] Jeon, M. K.; Won, J. Y.; Lee, K. R.; Woo, S. I. Electrochem. Commun. 2007, 9, 2163.
[50] Wang, D. Y.; Chou, H. L.; Lin, Y. C.; Lai, F. J. J. Am. Chem. Soc. 2012, 134, 10011.
[51] Zeng, J. H.; Lee, J. Y. Int. J. Hydrogen Energy 2007, 32, 4389.
[52] Strasser, P.; Fan, Q.; Devenney, M.; Weinberg, W. H.; Liu, P.; Norskov, J. K. J. Phys Chem B 2003, 107, 11013.
[53] Jeon, M. K.; Zhang, Y.; McGinn, P. J. Electrochim. Acta 2009, 59, 2837.
[54] Wang, J. S.; Xi, J. Y.; Bai, Y. X.; Shen, Y.; Sun, J.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. J. Power Sources 2007, 164, 555.
[55] Saha, M. S.; Li, R.; Cai, M.; Sun, X. Electrochem. Solid-State Lett. 2007, 10, B130.
[56] Wang, Y.; Fachini, E. R.; Cruz, G.; Zhu, Y.; Ishikawa, Y.; Colucci, J. A. J. Electrochem. Soc. 2001, 148, C222.
[57] Wang, J. S.; Deng, X. Z.; Xi, J. Y.; Chen, L. Q.; Zhu, W. T.; Qiu, X. P. J. Power Sources 2007, 170, 297.
[58] Sandoval-Gonzalez, A.; Borja-Arco, E.; Escalante, J.; Jimenez- Sandoval, O.; Gamboa, S. A. Int. J. Hydrogen Energy 2012, 37, 1752.
[59] Xiang, X. D.; Huang, Q. M.; Fu, Z.; Lin, Y. L.; Wu, W.; Hu, S. J.; Li, W. S. Int. J. Hydrogen Energy 2012, 37, 4710.
[60] Wang, C. T.; Willey, R. J. Catal. Today 1999, 52, 83.
[61] El-Deab, M. S. Int. J. Electrochem. Sci. 2009, 4, 1329.
[62] Gao, Z.; Wang, J.; Li, Z. S.; Yang, W. L.; Wang, B.; Hou, M. J. Chem. Mater. 2011, 23, 3509.
[63] Wang, Y. L.; Zhang, D. D.; Peng, W.; Liu, L.; Li, M. G. Electrochim. Acta 2011, 56, 5754.
[64] Wang, Y. L.; Ji, H. Q.; Peng, W.; Liu, L.; Gao, F.; Li, M. G. Int. J. Hydrogen Energy 2012, 37, 9324.
[65] Lee, K.; Nam, J. H.; Lee, J. H. Electrochem. Commun. 2005, 7, 113.
[66] Wang, Y.; Shao, Y. Y.; Matson, D. W.; Li, J. H.; Li, Y. H. ACS Nano 2010, 4, 1790.
[67] Zhang, Y. J.; Mori, T.; Ye, J. H. J. Am. Chem. Soc. 2010, 132, 6294.
[68] Choi, B.; Yoon, H.; Park, I. S.; Jang, J.; Sung, Y. E. Carbon 2007, 45, 2496.
[69] Liu, Z. W.; Shi, Q. Q.; Peng, F. Electrochem. Commun. 2012, 16, 73.
[70] Housmans, T. H. M.; Wonders, A. H.; Koper, M. T. M. J. Phys. Chem. B 2006, 110, 10021.
[71] Mukerjee, S.; Urian, R. C. Electrochim. Acta 2002, 47, 3219.
[72] Liu, S. X.; Liao, L W.; Tao, Q.; Chen, Y. X.; Ye, S. Phys. Chem. Chem. Phys. 2011, 13, 9725.
[73] Chen, D. J.; Hofstead-Duffy, A. M.; Park, I. S.; Atienza, D. O. J. Phys. Chem. C 2011, 115, 8735.
[74] Kabbabi, A.; Faure, R.; Durand, R.; Beden, B.; Hahn, F. J. Electroanal. Chem. 1998, 444, 41.
[75] Rigsby, M. A.; Zhou, W. P.; Lewera, A.; Duong, H. T.; Bagus, P. S.; Jaegermann, W. J. Phys. Chem. C 2008, 112, 15596.
[76] Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. J. Phys. Chem. B 2005, 109, 11622.
[77] Jarvi, T. D.; Sriramulu, S.; Stuve, E. M. Colloids Surf., A 1998, 134, 145.
[78] Ferrin, P.; Mavrikakis, M. J. Am. Chem. Soc. 2009, 131, 14389.
[79] Housmans, T. H. M.; Wonders, A. H.; Koper, M. T. M. J. Phys. Chem. B 2006, 110, 10028.
[80] Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. J. Phys. Chem. B 2002, 106, 12947.
[81] Mikita, K.; Nakamura, M.; Hoshi, N. Langmuir 2007, 23, 9097.
[82] Wang, S. Y.; Jiang, S. P.; Wang, X.; Guo, J. Electrochim. Acta 2011, 56, 1567.
[83] Kim, J. M.; Joh, H. I.; Jo, S. M.; Ahn, D. J.; Ha, H. Y.; Hong, S.-A.; Kima, S. K. Electrochim. Acta 2010, 55, 4834.
[84] Guo, S. J.; Zhang, S.; Sun, X. L.; Sun, S. H. J. Am. Chem. Soc. 2011, 133, 15354.
[85] Bi, Y. P.; Lu, G. X. Electrochem. Commun. 2009, 11, 46.
[86] Ding, L. X.; Wang, A. L.; Li, G. R.; Liu, Z. Q.; Zhao, W. X.; Su, C. Y.; Tong, Y. X. J. Am. Chem. Soc. 2012, 134, 5731.
[87] Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Carbon 2011, 49, 2918.
[88] Li, Y. X.; Wu, S. N.; Cui, X.; Wang, L.; Shi, X. M. Electrochem. Commun. 2012, 25, 19.
[89] Zhang, H. M.; Zhou, W. Q.; Du, Y. K.; Yang, P.; Wang, C. Y. Electrochem. Commun. 2010, 12, 884.
[90] Ye, W. C.; Kou, H. H.; Liu, Q. Z.; Yan, J. F.; Zhou, F.; Wang, C. M. Int. J. Hydrogen Energy 2012, 37, 4096.
[91] Ghosh, S.; Raj, C. R. J. Phys. Chem. C 2010, 114, 10843.
[92] Li, Y. M.; Tang, L. H.; Li, J. H. Electrochem. Commun. 2009, 11, 846.
[93] Lim, E. J.; Choi, S. M.; Seo, M. H. Electrochem. Commun. 2013, 28, 100.
[94] Jiang, F. X.; Yao, Z. Q.; Yue, R. R.; Du, Y. K.; Xun, J. K. Int. J. Hydrogen Energy 2012, 37, 14085.
[95] Wang, Z. H.; Xia, J. F.; Zhu, L. Y.; Guo, X. M.; Zhang, F. F.; Li, Y. H.; Xia, Y. Z. Sens. Actuators B: Chem. 2012, 161, 133.
[96] Wang, Z. H.; Yu, H. R.; Xia, J. F.; Zhang, F. F.; Li, F.; Xia, Y. Z.; Li, Y. H. Desalination 2012, 299, 50.
[97] Cheng, Q.; Tang, J.; Wang, Z. H.; Zhang, F. F.; Zhang, H.; Shinya, N.; Chen, L. C. 62nd of Annual Meeting of the International Society of Electrochemistry, September 11~15, 2011, Niigata, Japan.
[98] Shi, G. Y.; Wang, Z. H.; Xia, J. F.; Zhang, F. F.; Xia, Y. Z.; Li, Y. H. Acta Chim. Sinica 2013, 71, 228. (史国玉, 王宗花, 夏建飞, 张菲菲, 夏延致, 李延辉, 化学学报, 2013, 71, 228.)
[99] Rajesh; Paul, R. K.; Mulchandani, A. J. Power Sources 2013, 223, 23.
[100] Guo, S. J.; Fang, Y. X.; Dong, S. J.; Wang, E. K. J. Phys. Chem. C 2007, 111, 17104.
[101] Zeng, J. H.; Yang, J.; Lee, J. Y.; Zhou, W. J. J. Phys. Chem. B 2006, 110, 24606.
[102] Zhang, H.; Yin, Y. J.; Hu, Y. J.; Li, C. Y.; Wu, P.; Wei, S. H.; Cai, C. X. J. Phys. Chem. C 2010, 114, 11861.
[103] Wu, Y. N.; Liao, S. J.; Liang, Z. L.; Yang, L. J.; Wang, R. F. J. Power Sources 2009, 194, 809.
[104] Fu, X. Z.; Liang, Y.; Chen, S. P.; Lin, J. D.; Liao, D. W. Catal. Commun. 2009, 10, 1895.
[105] Zhao, H. B.; Li, L.; Yang, J.; Zhang, Y. M. Electrochem. Commun. 2008, 10, 1529.
[106] Godoi, D. R. M.; Perez, J.; Villullas, H. M. J. Electrochem. Soc. 2007, 154, B474.
[107] Bergamaski, K.; Pinheiro, A. L. N.; Teixeira-Neto, E.; Nart, F. C. J. Phys. Chem. B 2006, 110, 19271.
[108] Frelink, T.; Visscher, W.; van Veen, J. A. R. J. Electroanal. Chem. 1995, 382, 65.
[109] Takasu, Y.; Iwazaki, T.; Sugimoto, W.; Murakami, Y. Electrochem. Commun. 2000, 2, 674.
[110] Park, S.; Xie, Y.; Weaver, M. J. Langmuir 2002, 18, 5798.
[111] Bergamaski, K.; Pinheiro, A. L. N.; Teixeira-Neto, E.; Nart, F. C. J. Phys. Chem. B 2006, 110, 19279.
[112] Rhee, C. K.; Kim, B. J.; Ham, C.; Kim, Y. J.; Song, K.; Kwon, K. Langmuir 2009, 25, 7147.
[113] Sun, Y. B.; Zhuang, L.; Lu, J. T.; Hong, X. L.; Liu, P. F. J. Am. Chem. Soc. 2007, 129, 15467.
[114] Sato, T.; Okaya, K.; Kunimatsu, K.; Yano, H.; Watanabe, M.; Uchida, H. ACS Catal. 2012, 2, 450.
[115] Mukerjee, S.; McBreen, J. J. Electroanal. Chem. 1998, 448, 163.
[116] Zellner, M. B.; Chen, J. G. Catal. Today 2005, 99, 299.
[117] Mellinger, Z. J.; Kelly, T. G.; Chen, J. G. ACS Catal. 2012, 2, 751.
[118] Guil-López, R.; Martinez-Huerta, M. V.; Guillen-Villafuerte, O.; Pena, M. A.; Fierro, J. L. G.; Pastor, E. Int. J. Hydrogen Energy 2010, 35, 7881.
[119] Zhang, X. F.; Shen, P. K. Int. J. Hydrogen Energy 2013, 38, 2257.
[120] Chu, D. B.; Zhou, X. F.; Lin, C. J. Chem. J. Chin. Univ. 2000, 21, 133. (褚道葆, 周幸福, 林昌健, 高等学校化学学报, 2000, 21, 133.)
[121] Wang, M.; Guo, D. J.; Li, H. L. J. Solid State Chem. 2005, 178, 1996.
[122] Hosseini, M. G.; Momeni, M. M.; Faraji, M. Electroanalysis 2010, 22, 2620.
[123] Zhao, Y. C.; Nie, S. L.; Wang, H. W.; Tian, J. N.; Ning, Z.; Li, X. X. J. Power Sources 2012, 218, 320.
[124] Samant, P. V.; Fernandes, J. B. J. Power Sources 1999, 79, 114.
[125] Vázquez-Gómeza, L.; Verlatoa, E.; Cattarina, S.; Comissoa, N.; Guerriero, P.; Musiani, M. Electrochim. Acta 2011, 56, 2237.
[126] Liu, Z. L.; Zhang, X. H.; Hong, L. Electrochem. Commun. 2009, 11, 925.
[127] Fleischmann, M.; Korinek, K.; Pletcher, D. J. Chem. Soc., Perkin Trans. 1972, 10, 1396.
[128] Abdel Hameed, R. M.; El-Khatib, K. M. Int. J. Hydrogen Energy 2010, 35, 2517.
Outlines

/