Perspectives

Application of the Concentration Addition Model in the Assessment of Chemical Mixture Toxicity

  • Liu Shushen ,
  • Liu Ling ,
  • Chen Fu
Expand
  • Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092

Received date: 2013-04-01

  Online published: 2013-06-13

Supported by

Project supported by the National Natural Science Foundation of China (Nos. 21177097, 20977065) and Specialized Research Fund for the Doctoral Program of Higher Education (Nos. 20120072110052).

Abstract

Various chemical pollutants are always existing as mixtures in real environment. Currently, the assessment and prediction of chemical mixture toxicity is the hotspots and difficulties in environmental chemistry. To accurately assess and predict the toxicity of a chemical mixture, it is necessary to validate whether the toxicities of various components in the mixture is additive or not. Three common additive reference models, the effect summation (ES), concentration addition (CA), and independent action (IA), are available to determine the toxicity interaction. Synergism or antagonism between the components in a mixture can be identified if the observed toxicity of the mixture deviates from the prediction in terms of ES, CA, or IA. The resulting interaction type (synergism or antagonism) may be inconsistent according to those reference models applied. Although the ES model is the earliest application model proposed to assess and predict mixture toxicity, its application in environmental chemistry was affected due to its limit in the interpretation of the so-called sham combination constructed by the same compound. The IA model is suitable to model the toxicities of mixtures consisting of the components showing dissimilar modes of actions. The CA can predict the toxicities of the mixtures consisting of the chemicals with similar modes of actions and can rationally interpret the sham combination which is impossible to be depicted by the ES model. The CA is therefore often considered as a standard additive model for the toxicity prediction of a chemical mixture. However, the CA is only a pragmatic model because it has no solid theory basis and no direct connection with the mechanism of action resulting in toxicity. Furthermore, there are so-called predictive blind zones in some concentration intervals on the concentration-response curve where the toxicities of mixtures cannot be predicted by the CA. So, it is necessary to carefully use the CA model.

Cite this article

Liu Shushen , Liu Ling , Chen Fu . Application of the Concentration Addition Model in the Assessment of Chemical Mixture Toxicity[J]. Acta Chimica Sinica, 2013 , 71(10) : 1335 -1340 . DOI: 10.6023/A13040355

References

[1] Backhaus, T.; Faust, M. Environ. Sci. Technol. 2012, 46(5), 2564.

[2] Vacchi, F. I.; Albuquerque, A. F.; Vendemiatti, J. A.; Morales, D. A.; Ormond, A. B.; Freeman, H. S.; Zocolo, G. J.; Zanoni, M. V. B.; Umbuzeiro, G. Sci. Total Environ. 2013, 442, 302.

[3] Spurgeon, D. J.; Jones, O. A. H.; Dorne, J. L. C. M.; Svendsen, C.; Swain, S.; Sturzenbaum, S. R. Sci. Total Environ. 2010, 408(18), 3725.

[4] Dominguez-Cortinas, G.; Diaz-Barriga, F.; Isabel Martinez-Salinas, R.; Cossío, P.; Nelinho Pérez-Maldonado, I. Environ. Sci. Pollut. Res. 2013, 20(1), 351.

[5] Berenbaum, M. J. Theor. Boil. 1985, 114, 413.

[6] Cedergreen, N.; Christensen, A. M.; Kamper, A.; Kudsk, P.; Mathiassen, S. K.; Streibig, J. C.; Sorensen, H. Environ. Toxicol. Chem. 2008, 27(7), 1621.

[7] Martin, H. L.; Svendsen, C.; Lister, L. J.; Gomez-Eyles, J. L.; Spurgeon, D. J. Environ. Toxicol. Chem. 2009, 28(1), 97.

[8] Silva, E.; Rajapakse, N.; Scholze, M.; Backhaus, T.; Ermler, S.; Kortenkamp, A. Toxicol. Sci. 2011, 122(2), 383.

[9] Porsbring, T.; Backhaus, T.; Johansson, P.; Kuylenstierna, M.; Blanck, H. Environ. Toxicol. Chem. 2010, 29(12), 2806.

[10] Bosgra, S.; van Eijkeren, J. C. H.; Slob, W. Crit. Rev. Toxicol. 2009, 39(5), 418.

[11] Fischer, B. D. CNS Neurol. Disord.-Drug Targets 2011, 10(5), 529.

[12] Abendroth, J. A.; Blankenship, E. E.; Martin, A. R.; Roeth, F. W. Weed Technol. 2011, 25(3), 436.

[13] Backhaus, T.; Arrhenius, A.; Blanck, H. Environ. Sci. Technol. 2004, 38(23), 6363.

[14] Backhaus, T.; Faust, M.; Scholze, M.; Gramatica, P.; Vighi, M.; Grimme, L. H. Environ. Toxicol. Chem. 2004, 23(2), 258.

[15] Liu, S. S.; Zhang, J.; Zhang, Y. H.; Qin, L. T. Acta Chim. Sinica 2012, 70, 1511. (刘树深, 张瑾, 张亚辉, 覃礼堂, 化学学报, 2012, 70, 1511.)

[16] Liu, S. S.; Song, X. Q.; Liu, H. L.; Zhang, Y. H.; Zhang, J. Chemosphere 2009, 75, 381.

[17] Wang, L. J.; Liu, S. S.; Yuan, J.; Liu, H. L. Chemosphere 2011, 84, 1440.

[18] Rylee, P. D.; Stahlhut, R. W.; Ponzi, D.; vom Saal, F. S.; Taylor, J. A. Reprod. Toxicol. 2012, 34(4), 614.

[19] Andrade, A. J. M.; Grande, S. W.; Talsness, C. E.; Gericke, C.; Grote, K.; Golombiewski, A.; Sterner-Kock, A.; Chahoud, I. Toxicology 2006, 227(3), 185.

[20] Zhu, X. W.; Liu, S. S.; Qin, L. T.; Chen, F.; Liu, H. L. Ecotox. Environ. Safety 2013, 89, 130.

[21] Conolly, R. B.; Lutz, W. K. Toxicol. Sci. 2004, 77, 151.

[22] Jenkins, S.; Wang, J.; Eltoum, I.; Desmond, R.; Lamartiniere, C. A. Environ. Health. Perspect 2011, 119, 1604.

[23] Vandenberg, L. N.; Colborn, T.; Hayes, T. B.; Heindel, J. J.; Jacobs, D. R., Jr.; Lee, D. H.; Shioda, T.; Soto, A. M.; vom Saal, F. S.; Welshons, W. V.; Zoeller, R. T.; Myers, J. P. Endocr. Rev. 2012, 33, 378.

[24] Silva, E.; Rajapakse, N.; Kortenkamp, A. Environ. Sci. Technol. 2002, 36(8), 1751.

[25] Faust, M.; Altenburger, R.; Backhaus, T.; Blanck, H.; Boedeker, W.; Gramatica, P.; Hamer, V.; Scholze, M.; Vighi, M.; Grimme, L. H. Aquat. Toxicol. 2001, 56(1), 13.

[26] Ge, H. L.; Liu, S. S.; Zhu, X. W.; Liu, H. L.; Wang, L. J. Environ. Sci. Technol. 2011, 45, 1623.

[27] Loewe, S. Arzneimittelforschung 1953, 3, 285.

[28] Berenbaum, M. C. Adv. Cancer Res. 1981, 35, 269.

[29] Tallarida, R. J. J. Pharmacol. Exp. Therap. 2006, 319(1), 1.

[30] Rodea-Palomares, I.; Petre, A. L.; Boltes, K.; Leganes, F.; Perdigon-Melon, J. A.; Rosal, R.; Fernandez-Pinas, F. Water Res. 2010, 44(2), 427.

[31] Sorensen, H.; Cedergreen, N.; Skovgaard, I. M.; Streibig, J. C. Environ. Ecol. Stat. 2007, 14(4), 383.

[32] Zhu, X. W.; Liu, S. S.; Ge, H. L.; Liu, Y. China Environ. Sci. 2009, 29(2), 113. (朱祥伟, 刘树深, 葛会林, 刘堰, 中国环境科学, 2009, 29(2), 113.)

[33] Baldwin, W. S.; Roling, J. A. Toxicol. Sci. 2009, 107(1), 93.

[34] Cedergreen, N.; Christensen, A. M.; Kamper, A.; Kudsk, P.; Mathiassen, S. K.; Streibig, J. C.; Sorensen, H. Environ. Toxicol. Chem. 2008, 27(7), 1621.

[35] Wang, Z.; Chen, J. W.; Huang, L. P.; Wang, Y.; Cai, X. Y.; Qiao, X. L.; Dong, Y. Y. Chemosphere 2009, 74(5), 735.

[36] Ermler, A. J.; Spurgeon, D. J.; Svendsen, C.; Griffin, J. L.; Swain, S. C.; Sturzenbaum, S. R.; Jones, O. A. H. Ecotoxicology 2012, 21(5), 1436.

[37] Christen, V.; Crettaz, P.; Oberli-Schraemmli, A.; Fent, K. Toxicol. Appl. Pharmacol. 2012, 259(2), 169.

[38] Ermler, S.; Scholze, M.; Kortenkamp, A. Toxicol. Appl. Pharmacol. 2011, 257(2), 189.

[39] Zhang, J.; Liu, S. S.; Zhang, J.; Qin, L. T.; Deng, H. P. J. Hazard. Mater. 2012, 239240, 102.

[40] Backhaus, T.; Scholze, M.; Grimme, L. H. Aquat. Toxicol. 2000, 49(1~2), 49.

[41] Altenburger, R.; Backhaus, T.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L. H. Environ. Toxicol. Chem. 2000, 19(9), 2341.

[42] Backhaus, T.; Altenburger, R.; Boedeker, W.; Faust, M.; Scholze, M.; Grimme, L. H. Environ. Toxicol. Chem. 2000, 19(9), 2348.

[43] Olmstead, A. W.; LeBlanc, G. A. Aquat. Toxicol. 2005, 75(3), 253.

[44] Mo, L. Y.; Liu, S. S.; Liu, H. L. China Environ. Sci. 2008, 28(4), 334. (莫凌云, 刘树深, 刘海玲, 中国环境科学, 2008, 28(4), 334.)

[45] Ge, H. L.; Liu, S. S.; Liu, F. Asian J. Ecotoxicol. 2006, 1(4), 295. (葛会林, 刘树深, 刘芳, 生态毒理学报, 2006, 1(4), 295.)

[46] Payne, J.; Rajapakse, N.; Wilkins, M.; Kortenkamp, A. Environ. Health Perspect. 2000, 108(10), 983.

[47] Song, X. Q.; Liu, S. S.; Liu, H. L.; Ge, H. L. Asian J. Ecotoxicol. 2008, 3(3), 237. (宋晓青, 刘树深, 刘海玲, 葛会林, 生态毒理学报, 2008, 3(3), 237.)

[48] Villa, S.; Migliorati, S.; Monti, G. S.; Vighi, M. Ecotoxicol. Environ. Safety 2012, 86, 93.

[49] Barata, C.; Fernandez-San Juan, M.; Feo, M. L.; Eljarrrat, E.; Soares, A. M. V. M.; Barcelo, D.; Baird, D. J. Environ. Sci. Technol. 2012, 46(17), 9663.

[50] Neuwoehner, J.; Fenner, K.; Escher, B. I. Environ. Sci. Technol. 2009, 43(17), 6830.

[51] Altenburger, R.; Nendza, M.; Schuurmann, G. Environ. Toxicol. Chem. 2003, 22(8), 1900.

Outlines

/