Review

Research Progress and Optimization of Non-aqueous Electrolyte for Lithium Air Batteries

  • Gu Daming ,
  • Wang Yu ,
  • Gu Shuo ,
  • Zhang Chuanming ,
  • Yang Dandan
Expand
  • a Department of Chemistry, Harbin Institute of Technology, Harbin 150001;
    b Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA

Received date: 2013-04-10

  Online published: 2013-06-27

Supported by

Project supported by the Outstanding Subject Leaders Special Foundation of Harbin, China (No. 2012RFXXG99).

Abstract

Lithium air battery is an advanced electrochemical power source that lies between fuel cell and lithium battery, and it is considered to be one of the most promising next generation batteries due to the fact that it may provide extremely high theoretical energy, i.e. 11140 Wh/kg (Li), which is estimated to be 6~9 times higher than that of the lithium ion batteries. The reason for such high theoretical energy is the use of Li sheet (with extremely high energy density) as anode electrode and O2 as cathodic reactant from the air. Other advantages of the battery include stable output voltage, cost effectiveness, and pollution free, and have broad application prospects. If it is successfully developed, the battery could be an excellent energy storage device for renewable energy sources such as wind, solar, and tidal energy, which brings a prospect for human to solve the problem of environment pollution and energy crisis. Electrolyte is a crucial component of lithium air battery and the electrochemical performance of the battery is determined by electrolyte to a great extent. Due to the react violently between lithium and water, it is not practical for lithium air battery to use directly an aqueous electrolyte unless the anode can be protected from degradation. In this paper, the authors presented the latest research progress on three kind of non-aqueous electrolyte, i.e. organic electrolyte, ionic liquid and solid electrolyte. We elaborated the influence of various chemical properties (electrochemical stability, conductivity, polarity), physical properties (dielectric constant, viscosity, oxygen solubility, hygroscopicity and electrolyte filling) and physicochemical properties (infiltration ability to cathode materials) on lithium air battery's performance, i.e. specific capacity, rate capacity and cycling efficiency. In addition, we also provided insights into the prospect of non-aqueous electrolyte for lithium air battery.

Cite this article

Gu Daming , Wang Yu , Gu Shuo , Zhang Chuanming , Yang Dandan . Research Progress and Optimization of Non-aqueous Electrolyte for Lithium Air Batteries[J]. Acta Chimica Sinica, 2013 , 71(10) : 1354 -1364 . DOI: 10.6023/A13040389

References

[1] Gu, D.-M.; Zhang, C.-M.; Gu, S.; Zhang, Y.; Wang, Y.; Qiang, L.-S. Acta Chim. Sinica 2012, 70, 2115. (顾大明, 张传明, 顾硕, 张音, 王余, 强亮生, 化学学报, 2012, 70, 2115.)
[2] Abraham, K. M.; Jiang, Z. J. Electrochem. Soc. 1996, 143, 1.
[3] Zhang, S. S.; Foster, D.; Read, J. J. Power Sources 2010, 195, 1235.
[4] Zheng, J.-P.; Liang, R.-Y.; Hendrickson, M.; Plichta, E. J. Electrochem. Soc. 2008, 155, A432.
[5] Kowalczk, I.; Read, J.; Salomon, M. Pure Appl. Chem. 2007, 79, 851.
[6] Padbury, R.; Zhang, X. -W. J. Power Sources 2011, 196, 4436.
[7] Wang, F.; Liang, C.-S.; Xu, D.-L.; Cao, H.-Q.; Sun, H.-Y.; Luo, Z.-K. J. Inorg. Mater. 2013, 27, 1233. (王芳, 梁春生, 徐大亮, 曹慧群, 孙宏元, 罗仲宽, 无机材料学报, 2013, 27, 1233.)
[8] Gao, Y.; Wang, C.; Pu, W.-H.; Deng, C.-S. Battery Bimonthly 2011, 41, 161. (高勇, 王诚, 蒲薇华, 邓长生, 电池, 2011, 41, 161.)
[9] Goodenough, J. B.; Kim, Y. Chem. Mater. 2010, 22, 587.
[10] Read, J. J. Electrochem. Soc. 2002, 149, A1190.
[11] Xu, W.; Xiao, J.; Wang, D.-Y.; Zhang, J.; Zhang, J.-G. J. Electrochem. Soc. 2010, 157, A219.
[12] Xu, K. Chem. Rev. 2004, 104, 4303.
[13] Xu, W.; Xiao, J.; Zhang, J.; Wang, D.-Y.; Zhang, J.-G. J. Electrochem. Soc. 2009, 156, A773.
[14] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2010, 114, 9178.
[15] The physical data were extracted and compiled from the following literature sources: (a) Jang, G. J.; Tomkins, R. P. T. Non-aqueous Electrolytes Handbook, Vol. 1, Academic Press, New York, 1972; (b) Dudley, J. T.; Wilkinson, D. P.; Thomas, G.; LeVae, R.; Woo, S.; Blom, H.; Horvath, C.; Juzkow, M. W.; Denis, B.; Juric, P.; Aghakian, P.; Dahn, J. R. J. Power Sources 1991, 35, 59; (c) Aldrich Handbook of Fine Chemicals and Laboratory Equipment, Aldrich Chemical Co., 20032004; (d) Ue, M.; Ida, K.; Mori, S. J. Electrochem. Soc. 1994, 141, 2989; (e) Ding, M. S.; Xu, K.; Zhang, S.; Jow, T. R. J. Electrochem. Soc. 2001, 148, A299.
[16] Younesi, R.; Hahlin, M.; Bjorefors, F.; Johansson, P.; Edstrom, K. Chem. Mater. 2013, 25, 77.
[17] Freunberger, S. A.; Chen, Y.-H.; Peng, Z.-Q.; Griffin, J. M.; Hardwick, L. J.; Bardé, F.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2011, 133, 8040.
[18] Chen, Y.-H.; Freunberger, S. A.; Peng, Z.-Q.; Bardé, F.; Bruce, P. G. J. Am. Chem. Soc. 2012, 134, 7952.
[19] McCloskey, B. D.; Speidel, A.; Scheffler, R.; Miller, D. C.; Viswanathan, V.; Hummelshøj, J. S.; Nørskov, J. K.; Luntz, A. C. J. Phys. Chem. Lett. 2012, 3, 997.
[20] Peng, Z.-Q.; Freunberger, S. A.; Chen, Y.-H.; Bruce, P. G. Science 2012, 337, 563.
[21] Read, J.; Mutolo, K.; Ervin, M.; Behl, W.; Wolfenstine, J.; Driedger, A.; Foster, D. J. Electrochem. Soc. 2003, 150, A1351.
[22] Ue, M.; Mori, S. J. Electrochem. Soc. 1995, 142, 2577.
[23] Schmidt, M.; Heider, U.; Kuehner, A.; Oesten, R.; Jungnitz, M.; Ignat'ev, N.; Sartori, P. J. Power Sources 2001, 9798, 557.
[24] Dominey, L. A.; Koch, V. R.; Blakley, T. J. Electrochim. Acta 1992, 37, 1551.
[25] Walker, C. W.; Cox, J. D.; Salomon, M. J. Electrochem. Soc. 1996, 143, L80.


[26] Zhang, D. M.S. Thesis, Fudan University, Shanghai, 2010. (张灯, 硕士论文, 复旦大学, 上海, 2010.)
[27] Ue, M.; Murakami, A.; Nakamura, S. J. Electrochem. Soc. 2002, 149, A1572.
[28] Ue, M.; Takeda, M.; Takehara, M.; Mori, S. J. Electrochem. Soc. 1997, 144, 2684.
[29] Eggert, G.; Heitbaum, J. Electrochim. Acta 1986, 31, 1443.
[30] Nanjundiah, C.; Goldman, J. L.; Dominey, L. A.; Koch, V. R. J. Electrochem. Soc. 1988, 135, 2914.
[31] Xu, K.; Ding, M. S.; Jow, T. R. J. Electrochem. Soc. 2001, 148, A267.
[32] Read, J. J. Electrochem. Soc. 2006, 153, A196.
[33] Laoire, C. O.; Mukerjee, S.; Abraham, K. M.; Plichta, E. J.; Hendrickson, M. A. J. Phys. Chem. C 2009, 113, 20127.
[34] Zhang, S. S.; Foster, D.; Read, J. Electrochim. Acta 2011, 56, 1283.
[35] Ogasawara, T.; Débart, A.; Holzapfel, M.; Novák, P.; Bruce, P. G. J. Am. Chem. Soc. 2006, 128, 1390.
[36] Xu, W.; Xiao, J.; Wang, D.-Y.; Zhang, J.; Zhang, J.-G. Electrochem. Solid-State Lett. 2010, 13, A48.
[37] Xie, B.; Lee, H. S.; Li, H.; Yang, X.-Q.; McBreen, J.; Chen, L.-Q. Electrochem. Commun. 2008, 10, 1195.
[38] Zhang, S. S.; Read, J. J. Power Sources 2011, 196, 2867.
[39] Zhang, S. S.; Xu, K.; Read, J. J. Power Sources 2011, 196, 3906.
[40] Zhang, S.-J.; Xu, C.-M.; Lv, X.-M; Zhou, Q. Ionic Liquids and Green Chemistry, Science Press, Beijing, 2009, p. 473.
[41] Kuboki, T.; Okuyama, T.; Ohsaki, T.; Takami, N. J. Power Sources 2005, 146, 766.
[42] Guo, Z.-Y.; Zhu, G.-N.; Qiu, Z.-J.; Wang, Y.-G.; Xia, Y.-Y. Electrochem. Commun. 2012, 25, 26.
[43] Soavi, F.; Monaco, S.; Mastragostino, M. J. Power Sources 2013, 224, 115.
[44] Zhang, D.; Okajima, T.; Matsumoto, F.; Ohsaka, T. J. Electrochem. Soc. 2004, 151, D31.
[45] Gao, N.; Xu, Z.-M.; Gu, D.-M. CN 201110173415.5, 2011.
[46] Kumar, B.; Kumar, J.; Leese, R.; Fellner, J. P.; Rodrigues, S. J.; Abraham, K. M. J. Electrochem. Soc. 2010, 157, A50.
[47] Gu, D.-M.; Li, J.-C.; Yang, L.; Xiao, Y. Acta Chim. Sinica 2010, 68, 2367. (顾大明, 李已才, 杨柳, 肖宇, 化学学报, 2010, 68, 2367.)
[48] Zhang, D.; Li, R.-S.; Huang, T.; Yu, A.-S. J. Power Sources 2010, 195, 1202.
[49] Wang, H.; Imanishi, N.; Hirano, A.; Takeda, Y.; Yamamoto, O. J. Power Sources 2012, 219, 22.
Outlines

/